Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Mar 08 2023 16:18:15
%S 33,85,93,121,141,170,201,213,217,244,284,301,393,428,434,445,506,602,
%T 603,604,633,637,697,841,921,962,1041,1074,1083,1084,1130,1137,1244,
%U 1261,1274,1309,1345,1401,1412,1430,1434,1448,1490,1532,1556,1586,1604
%N Numbers m such that the factorizations of m..m+2 have the same number of primes (including multiplicities).
%H Charles R Greathouse IV, <a href="/A045939/b045939.txt">Table of n, a(n) for n = 1..10000</a>
%t f[n_]:=Plus@@Last/@FactorInteger[n];lst={};lst={};Do[If[f[n]==f[n+1]==f[n+2],AppendTo[lst,n]],{n,0,7!}];lst (* _Vladimir Joseph Stephan Orlovsky_, May 12 2010 *)
%t pd2Q[n_]:=PrimeOmega[n]==PrimeOmega[n+1]==PrimeOmega[n+2]; Select[Range[1700],pd2Q] (* _Harvey P. Dale_, Apr 19 2011 *)
%t SequencePosition[PrimeOmega[Range[1700]],{x_,x_,x_}][[;;,1]] (* _Harvey P. Dale_, Mar 08 2023 *)
%o (PARI) is(n)=my(t=bigomega(n)); bigomega(n+1)==t && bigomega(n+2)==t \\ _Charles R Greathouse IV_, Sep 14 2015
%o (PARI) list(lim)=my(v=List(),a=1,b=1,c); forfactored(n=4,lim\1+2,c=bigomega(n); if(a==b&&a==c, listput(v,n[1]-2)); a=b; b=c); Vec(v) \\ _Charles R Greathouse IV_, May 07 2020
%Y Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), this sequence (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).
%Y A056809 is a subsequence.
%Y Cf. A006073. - _Harvey P. Dale_, Apr 19 2011
%K nonn,easy
%O 1,1
%A _David W. Wilson_