login
A190008
a(n) = n + [n*r/t] + [n*s/t]; r=1, s=sin(Pi/3), t=csc(Pi/3).
3
1, 4, 7, 10, 12, 15, 18, 20, 22, 25, 28, 31, 33, 36, 38, 41, 43, 46, 49, 52, 54, 57, 59, 62, 64, 67, 70, 73, 75, 77, 80, 83, 85, 88, 91, 94, 96, 98, 101, 104, 106, 109, 112, 115, 116, 119, 122, 125, 127, 130, 133, 136, 137, 140, 143, 146, 148, 151, 154, 156, 158, 161, 164, 167, 169, 172, 175, 177, 179, 182, 185, 188, 190
OFFSET
1,2
COMMENTS
See A190006.
LINKS
FORMULA
A190006: a(n) = n + [n*sin(Pi/3)] + [n*csc(Pi/3)].
A190007: b(n) = n + [n*csc(Pi/3)] + [n*(csc(Pi/3))^2].
A190008: c(n) = n + [n*sin(Pi/3)] + [n*(sin(Pi/3))^2].
MATHEMATICA
r=1; s=Sin[Pi/3]; t=Csc[Pi/3];
a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
c[n_] := n + Floor[n*r/t] + Floor[n*s/t];
Table[a[n], {n, 1, 120}] (* A190006 *)
Table[b[n], {n, 1, 120}] (* A190007 *)
Table[c[n], {n, 1, 120}] (* A190008 *)
PROG
(Magma) C<i> := ComplexField(); [n + Floor(n*Sin(Pi(C)/3)) + Floor(n*(Sin(Pi(C)/3))^2): n in [1..100]]; // G. C. Greubel, Jan 11 2018
CROSSREFS
Sequence in context: A176292 A050173 A078633 * A184911 A103762 A186226
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 03 2011
STATUS
approved