login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190010
E.g.f. exp(tan(x)+tan(x)^2+tan(x)^3).
1
1, 1, 3, 15, 73, 537, 3899, 35623, 345553, 3767185, 44993331, 575013087, 8040614041, 118459611753, 1883371991531, 31449522256183, 558550869727393, 10410156829764769, 204093418753532259, 4191381846930998319, 89889103856588434921
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{m=1..n} (Sum_{k=m..n} ((1+(-1)^(n-k))*Sum_{j=k..n} (j!* stirling2(n,j) *2^(n-j-1)*(-1)^((n+k)/2+j) *binomial(j-1,k-1)) *Sum_{j=0..m} binomial(j,-3*m+k+2*j) *binomial(m,j)))/m!), n>0, a(0)=1.
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Exp[Tan[x] + Tan[x]^2 + Tan[x]^3], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jan 10 2018 *)
PROG
(Maxima) a(n):=sum(sum((1+(-1)^(n-k))*sum(j!*stirling2(n, j)*2^(n-j-1) *(-1)^((n+k)/2+j)*binomial(j-1, k-1), j, k, n) *sum(binomial(j, -3*m+k+2*j) *binomial(m, j), j, 0, m), k, m, n)/m!, m, 1, n);
(PARI) x='x+O('x^30); Vec(serlaplace(exp(tan(x)+tan(x)^2+tan(x)^3))) \\ G. C. Greubel, Jan 10 2018
CROSSREFS
Sequence in context: A007142 A357222 A224397 * A151326 A063000 A002902
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, May 03 2011
STATUS
approved