Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #27 Sep 24 2024 17:38:29
%S 1,3,15,55,91,153,171,351,595,1711,1953,5151,5995,9591,11175,11935,
%T 15753,15931,17391,17955,31375,33153,35511,73153,153735,171991,173755,
%U 193131,193753,371953,399171,513591,551775,559153,571915,791911,917335,939135,1335795
%N Triangular numbers with only odd digits.
%H Jon E. Schoenfield, <a href="/A117960/b117960.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Alois P. Heinz)
%F Intersection of A000217 and A014261. - _M. F. Hasler_, Nov 20 2021
%p b:= proc(n) option remember; local k; for k from
%p 1+`if`(n=1, 0, b(n-1)) while 0=mul(irem(i, 2),
%p i=convert(k*(k+1)/2, base, 10) ) do od; k
%p end:
%p a:= n-> (t-> t*(t+1)/2)(b(n)):
%p seq(a(n), n=1..50); # _Alois P. Heinz_, Jul 12 2015
%t Select[Table[n(n+1)/2,{n,0,1650}],ContainsOnly[IntegerDigits[#],{1,3,5,7,9}]&] (* _James C. McMahon_, Sep 24 2024 *)
%o (PARI) select( {is_A117960(n)=is_A000217(n)&&is_A014261(n)}, [2*n+1|n<-[0..99999]]) \\ _M. F. Hasler_, Nov 20 2021
%o (PARI) apply( {A117960_row(n,t=10^n\9,L=List())=forvec(v=vector(n,i,[0,4]), is_A000217(n=t+fromdigits(v)*2)&&listput(L,n));L}, [1..6]) \\ row(n) = terms with n digits. Use concat(%) to flatten. - _M. F. Hasler_, Nov 23 2021
%o (Python)
%o from itertools import islice, count
%o def A117960(): return filter(lambda n: set(str(n)) <= {'1','3','5','7','9'}, (m*(m+1)//2 for m in count(0)))
%o A117960_list = list(islice(A117960(),20)) # _Chai Wah Wu_, Nov 22 2021
%Y Cf. A000217 (triangular numbers), A014261 (numbers with only odd digits), A117978.
%K base,nonn
%O 1,2
%A Luc Stevens (lms022(AT)yahoo.com), May 03 2006
%E Some terms corrected by _Alois P. Heinz_, Jul 12 2015