login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286186 Number of connected induced (non-null) subgraphs of the friendship graph with 2n+1 nodes. 15
7, 22, 73, 268, 1039, 4114, 16405, 65560, 262171, 1048606, 4194337, 16777252, 67108903, 268435498, 1073741869, 4294967344, 17179869235, 68719476790, 274877907001, 1099511627836, 4398046511167, 17592186044482, 70368744177733, 281474976710728, 1125899906842699 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Wikipedia, Friendship graph

Eric Weisstein's World of Mathematics, Dutch Windmill Graph

Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph

Index entries for linear recurrences with constant coefficients, signature (6,-9,4).

FORMULA

a(n) = 4^n + 3*n.

From Colin Barker, May 21 2017: (Start)

G.f.: x*(7 - 20*x + 4*x^2) / ((1 - x)^2*(1 - 4*x)).

a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3) for n>3.

(End)

MATHEMATICA

Table[4^n + 3 n, {n, 30}]

LinearRecurrence[{6, -9, 4}, {7, 22, 73}, 40] (* Harvey P. Dale, May 25 2019 *)

PROG

(PARI) Vec(x*(7 - 20*x + 4*x^2) / ((1 - x)^2*(1 - 4*x)) + O(x^30)) \\ Colin Barker, May 21 2017

CROSSREFS

Cf. A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286182 (prism), A286183 (antiprism), A286184 (helm), A286185 (Möbius ladder), A286187 (web), A286188 (gear), A286189 (rook), A285765 (queen).

Sequence in context: A101289 A085287 A278767 * A282035 A302273 A151822

Adjacent sequences:  A286183 A286184 A286185 * A286187 A286188 A286189

KEYWORD

nonn,easy

AUTHOR

Giovanni Resta, May 04 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 26 03:18 EDT 2019. Contains 326324 sequences. (Running on oeis4.)