login
A101289
Inverse Moebius transform of 5-simplex numbers A000389.
9
1, 7, 22, 63, 127, 280, 463, 855, 1309, 2135, 3004, 4704, 6189, 9037, 11776, 16359, 20350, 27901, 33650, 44695, 53614, 68790, 80731, 103776, 118882, 148701, 171220, 210469, 237337, 292292, 324633, 393351, 438922, 522298, 576346, 690333, 749399
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} d*(d+1)*(d+2)*(d+3)*(d+4)/120 = Sum_{d|n} C(d+4,5) = Sum{d|n} A000389(d) = Sum_{d|n} (d^5+10*d^4+35*d^3+50*d^2+24*d)/120.
G.f.: Sum_{k>=1} x^k/(1 - x^k)^6 = Sum_{k>=1} binomial(k+4,5) * x^k/(1 - x^k). - Seiichi Manyama, Apr 19 2021
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_5(n) + 10*sigma_4(n) + 35*sigma_3(n) + 50*sigma_2(n) + 24*sigma_1(n)) / 120.
Dirichlet g.f.: zeta(s) * (zeta(s-5) + 10*zeta(s-4) + 35*zeta(s-3) + 50*zeta(s-2) + 24*zeta(s-1)) / 120.
Sum_{k=1..n} a(k) ~ (zeta(6)/720) * n^6. (End)
PROG
(PARI) a(n) = sumdiv(n, d, binomial(d+4, 5)); \\ Seiichi Manyama, Apr 19 2021
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+4, 5)*x^k/(1-x^k))) \\ Seiichi Manyama, Apr 19 2021
(PARI) a(n) = my(f = factor(n)); (sigma(f, 5) + 10*sigma(f, 4) + 35*sigma(f, 3) + 50*sigma(f, 2) + 24*sigma(f))/120; \\ Amiram Eldar, Dec 30 2024
CROSSREFS
See also: A007437 (inverse Moebius transform of triangular numbers), A116963 (inverse Moebius transform of tetrahedral numbers).
Sequence in context: A246831 A354430 A122238 * A085287 A278767 A286186
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 31 2006
STATUS
approved