login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332508
a(n) = Sum_{d|n} binomial(n+d-2, n-1).
9
1, 3, 7, 25, 71, 280, 925, 3561, 12916, 49346, 184757, 710255, 2704157, 10427747, 40119781, 155288897, 601080391, 2334714319, 9075135301, 35352181116, 137846759282, 538302226628, 2104098963721, 8233718962365, 32247603703576, 126412458920775, 495918551104687
OFFSET
1,2
LINKS
FORMULA
a(n) = [x^n] Sum_{k>=1} x^k / (1 - x^k)^n.
a(n) ~ 4^(n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Aug 04 2022
MATHEMATICA
Table[DivisorSum[n, Binomial[n + # - 2, n - 1] &], {n, 1, 27}]
Table[SeriesCoefficient[Sum[x^k/(1 - x^k)^n, {k, 1, n}], {x, 0, n}], {n, 1, 27}]
PROG
(PARI) a(n) = sumdiv(n, d, binomial(n+d-2, n-1)); \\ Michel Marcus, Feb 14 2020
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 14 2020
STATUS
approved