The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A073570 G.f.: Sum_{n >= 1} x^n/(1-x^n)^5. 11
 1, 6, 16, 41, 71, 147, 211, 371, 511, 791, 1002, 1547, 1821, 2596, 3146, 4247, 4846, 6627, 7316, 9681, 10852, 13657, 14951, 19427, 20546, 25577, 27916, 34096, 35961, 44912, 46377, 56607, 59922, 70896, 74096, 90278, 91391, 108591, 113766, 133421 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 FORMULA (1/24)*(sigma[4](n)+6*sigma[3](n)+11*sigma[2](n)+6*sigma[1](n)). Inverse Moebius transform of pentatope numbers. - Jonathan Vos Post, Mar 31 2006 a(n) = Sum_{d|n} (d+1)*(d+2)*(d+3)*(d+4)/24 = Sum_{d|n} C(d+3,4) = Sum_{d|n} A000332(d+3). - Jonathan Vos Post, Mar 31 2006. Corrected by Joshua Zucker, May 04 2007 MATHEMATICA Table[(DivisorSigma[4, n]+6*DivisorSigma[3, n]+11*DivisorSigma[2, n]+ 6*DivisorSigma[ 1, n])/24, {n, 40}] (* Harvey P. Dale, Aug 08 2013 *) PROG (PARI) a(n) = sumdiv(n, d, binomial(d+3, 4)); \\ Seiichi Manyama, Apr 19 2021 (PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+3, 4)*x^k/(1-x^k))) \\ Seiichi Manyama, Apr 19 2021 CROSSREFS Cf. A000005, A000203, A000332, A007437, A059358, A101289. Sequence in context: A123607 A261819 A347642 * A283960 A283330 A263325 Adjacent sequences: A073567 A073568 A073569 * A073571 A073572 A073573 KEYWORD nonn AUTHOR Vladeta Jovovic, Aug 31 2002 EXTENSIONS Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 31 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 19:10 EST 2023. Contains 367540 sequences. (Running on oeis4.)