login
A073570
G.f.: Sum_{n >= 1} x^n/(1-x^n)^5.
11
1, 6, 16, 41, 71, 147, 211, 371, 511, 791, 1002, 1547, 1821, 2596, 3146, 4247, 4846, 6627, 7316, 9681, 10852, 13657, 14951, 19427, 20546, 25577, 27916, 34096, 35961, 44912, 46377, 56607, 59922, 70896, 74096, 90278, 91391, 108591, 113766, 133421
OFFSET
1,2
LINKS
FORMULA
(1/24)*(sigma[4](n)+6*sigma[3](n)+11*sigma[2](n)+6*sigma[1](n)).
Inverse Moebius transform of pentatope numbers. - Jonathan Vos Post, Mar 31 2006
a(n) = Sum_{d|n} (d+1)*(d+2)*(d+3)*(d+4)/24 = Sum_{d|n} C(d+3,4) = Sum_{d|n} A000332(d+3). - Jonathan Vos Post, Mar 31 2006. Corrected by Joshua Zucker, May 04 2007
MATHEMATICA
Table[(DivisorSigma[4, n]+6*DivisorSigma[3, n]+11*DivisorSigma[2, n]+ 6*DivisorSigma[ 1, n])/24, {n, 40}] (* Harvey P. Dale, Aug 08 2013 *)
PROG
(PARI) a(n) = sumdiv(n, d, binomial(d+3, 4)); \\ Seiichi Manyama, Apr 19 2021
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+3, 4)*x^k/(1-x^k))) \\ Seiichi Manyama, Apr 19 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Aug 31 2002
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 31 2007
STATUS
approved