The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A332510 a(n) = Sum_{k=1..n} lambda(floor(n/k)), where lambda = A008836. 1
 1, 0, 1, 2, 1, 2, 1, 2, 5, 2, 1, 4, 5, 4, 3, 4, 3, 6, 7, 6, 7, 4, 3, 8, 7, 6, 7, 8, 9, 8, 9, 10, 11, 8, 5, 10, 9, 10, 11, 10, 9, 12, 13, 12, 13, 12, 11, 16, 17, 12, 13, 12, 13, 16, 13, 14, 15, 14, 13, 16, 15, 16, 17, 20, 19, 18, 19, 18, 19, 14, 15, 22, 23, 22, 19, 22, 21, 20, 21, 20, 23, 20, 19, 26, 23 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Eric Weisstein's World of Mathematics, Liouville Function FORMULA G.f.: (1/(1 - x)) * ((theta_3(x) - 1) / 2 - Sum_{k>=2} lambda(k-1) * x^k / (1 - x^k)). a(n) = floor(sqrt(n)) - Sum_{k=1..n} Sum_{d|k, d > 1} lambda(d-1). Sum_{k=1..n} mu(k) * a(floor(n/k)) = lambda(n). MATHEMATICA Table[Sum[LiouvilleLambda[Floor[n/k]], {k, 1, n}], {n, 1, 85}] Table[Floor[Sqrt[n]] - Sum[DivisorSum[k, LiouvilleLambda[# - 1] &, # > 1 &], {k, 1, n}], {n, 1, 85}] nmax = 85; CoefficientList[Series[(1/(1 - x)) ((EllipticTheta[3, 0, x] - 1)/2 - Sum[LiouvilleLambda[k - 1] x^k/(1 - x^k), {k, 2, nmax}]), {x, 0, nmax}], x] // Rest PROG (PARI) a(n) = sum(k=1, n, (-1)^bigomega(n\k)); \\ Michel Marcus, Feb 14 2020 CROSSREFS Cf. A000196, A002819, A006218, A008683, A008836, A317625, A332509. Sequence in context: A099986 A166478 A050325 * A001314 A020733 A210700 Adjacent sequences:  A332507 A332508 A332509 * A332511 A332512 A332513 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Feb 14 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 19:40 EDT 2021. Contains 344960 sequences. (Running on oeis4.)