|
|
A002819
|
|
Liouville's function L(n) = partial sums of A008836.
(Formerly M0042 N0012)
|
|
28
|
|
|
0, 1, 0, -1, 0, -1, 0, -1, -2, -1, 0, -1, -2, -3, -2, -1, 0, -1, -2, -3, -4, -3, -2, -3, -2, -1, 0, -1, -2, -3, -4, -5, -6, -5, -4, -3, -2, -3, -2, -1, 0, -1, -2, -3, -4, -5, -4, -5, -6, -5, -6, -5, -6, -7, -6, -5, -4, -3, -2, -3, -2, -3, -2, -3, -2, -1, -2, -3, -4, -3, -4, -5, -6, -7, -6, -7, -8, -7, -8, -9, -10, -9, -8, -9, -8, -7, -6
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,9
|
|
COMMENTS
|
Short history of conjecture L(n) <= 0 for all n >= 2 by Deborah Tepper Haimo. George Polya conjectured 1919 that L(n) <= 0 for all n >= 2. The conjecture was generally deemed true for nearly 40 years, until 1958, when C. B. Haselgrove proved that L(n) > 0 for infinitely many n. In 1962, R. S. Lehman found that L(906180359) = 1 and in 1980, M. Tanaka discovered that the smallest counterexample of the Polya conjecture occurs when n = 906150257. - Harri Ristiniemi (harri.ristiniemi(AT)nicf.), Jun 23 2001
Prime number theorem is equivalent to a(n)=o(n). - Benoit Cloitre, Feb 02 2003
All integers appear infinitely often in this sequence. - Charles R Greathouse IV, Aug 20 2016
|
|
REFERENCES
|
H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409.
H. Gupta, A table of values of Liouville's function L(n), Research Bulletin of East Panjab University, No. 3 (Feb. 1950), 45-55.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 0..10000
Peter Borwein, Ron Ferguson, and Michael J. Mossinghoff, Sign changes in sums of the Liouville function. Math. Comp. 77 (2008), 1681-1694.
B. Cloitre, A tauberian approach to RH, arXiv preprint arXiv:1107.0812 [math.NT], 2011-2017.
H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409. [Annotated scanned copy]
H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409. [Annotated scanned copy]
D. T. Haimo, Experimentation and Conjecture Are Not Enough, The American Mathematical Monthly Volume 102 Number 2, 1995, page 105.
R. S. Lehman, On Liouville's function, Math. Comp., 14 (1960), 311-320.
Michael J. Mossinghoff, Timothy S. Trudgian, A tale of two omegas, arXiv:1906.02847 [math.NT], 2019.
Ben Sparks, 906,150,257 and the Pólya conjecture (MegaFavNumbers), SparksMath video (2020)
M. Tanaka, A Numerical Investigation on Cumulative Sum of the Liouville Function, Tokyo J. Math. 3, 187-189, 1980.
Eric Weisstein's World of Mathematics, Liouville Function
|
|
FORMULA
|
a(n) = determinant of A174856. - Mats Granvik, Mar 31 2010
|
|
MAPLE
|
A002819 := n -> add((-1)^numtheory[bigomega](i), i=1..n): # Peter Luschny, Sep 15 2011
|
|
MATHEMATICA
|
Accumulate[Join[{0}, LiouvilleLambda[Range[90]]]] (* Harvey P. Dale, Nov 08 2011 *)
|
|
PROG
|
(PARI) a(n)=sum(i=1, n, (-1)^bigomega(i))
(PARI) a(n)=my(v=vectorsmall(n, i, 1)); forprime(p=2, sqrtint(n), for(e=2, logint(n, p), forstep(i=p^e, n, p^e, v[i]*=-1))); forprime(p=2, n, forstep(i=p, n, p, v[i]*=-1)); sum(i=1, #v, v[i]) \\ Charles R Greathouse IV, Aug 20 2016
(Haskell)
a002819 n = a002819_list !! n
a002819_list = scanl (+) 0 a008836_list
-- Reinhard Zumkeller, Nov 19 2011
|
|
CROSSREFS
|
Cf. A008836, A002053, A028488, A239122.
Sequence in context: A255175 A196199 A053615 * A307672 A037834 A212496
Adjacent sequences: A002816 A002817 A002818 * A002820 A002821 A002822
|
|
KEYWORD
|
nice,sign
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Larry Reeves (larryr(AT)acm.org), Jul 09 2001
|
|
STATUS
|
approved
|
|
|
|