The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A020733 Consider number of prime divisors of C(n,k), k=0..n; a(n) = multiplicity of maximal value. 3
 2, 1, 2, 1, 2, 5, 4, 1, 4, 2, 4, 1, 2, 5, 8, 1, 2, 5, 8, 2, 6, 7, 8, 5, 8, 11, 2, 2, 4, 11, 10, 3, 8, 2, 6, 3, 6, 2, 4, 1, 2, 5, 8, 2, 12, 16, 16, 5, 6, 13, 8, 12, 12, 4, 8, 5, 4, 5, 6, 4, 2, 6, 10, 1, 2, 7, 6, 5, 2, 2, 12, 15, 16, 2, 8, 11, 2, 10, 10, 11, 2, 6, 12, 3, 16, 2, 4, 8, 10, 5, 2, 2, 4, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Robert Israel, Table of n, a(n) for n = 1..2000 EXAMPLE The number of distinct primes of C(15,k) are {0,2,3,3,4,4,4,4,4,4,4,4,3,3,2,0}; maximum is 4 and occurs 8 times; thus a(15)=8. MAPLE f:= proc(n) local A, i;   A:= [seq(nops(numtheory:-factorset(binomial(n, i))), i=0..n)];   numboccur(max(A), A); end proc: map(f, [\$1..100]); # Robert Israel, May 26 2020 MATHEMATICA a[n_] := Sort[Tally[Table[PrimeNu[Binomial[n, k]], {k, 0, n}]]][[-1, 2]]; Array[a, 100] (* Jean-François Alcover, Jun 09 2020 *) PROG (PARI) a(n) = {v = vector(n+1, k, omega(binomial(n, k-1))); m = vecmax(v); sum(i=1, n+1, v[i] == m); } \\ Michel Marcus, Dec 30 2013 CROSSREFS Cf. A001221, A048484, A048486. Sequence in context: A050325 A332510 A001314 * A210700 A215745 A059913 Adjacent sequences:  A020730 A020731 A020732 * A020734 A020735 A020736 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 29 09:41 EDT 2021. Contains 346344 sequences. (Running on oeis4.)