

A332512


Numbers k such that phi(k) == 0 (mod 12), where phi is the Euler totient function (A000010).


6



13, 21, 26, 28, 35, 36, 37, 39, 42, 45, 52, 56, 57, 61, 63, 65, 70, 72, 73, 74, 76, 77, 78, 84, 90, 91, 93, 95, 97, 99, 104, 105, 108, 109, 111, 112, 114, 117, 119, 122, 124, 126, 129, 130, 133, 135, 140, 143, 144, 146, 147, 148, 152, 153, 154, 155, 156, 157, 161
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Dence and Pomerance showed that the asymptotic number of the terms below x is ~ x.


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000
Thomas Dence and Carl Pomerance, Euler's function in residue classes, in: K. Alladi, P. D. T. A. Elliott, A. Granville and G. Tenebaum (eds.), Analytic and Elementary Number Theory, Developments in Mathematics, Vol. 1, Springer, Boston, MA, 1998, pp. 720, alternative link.


EXAMPLE

13 is a term since phi(13) = 12 == 0 (mod 12).


MATHEMATICA

Select[Range[200], Divisible[EulerPhi[#], 12] &]


PROG

(MAGMA) [k:k in [1..170] EulerPhi(k) mod 12 eq 0]; // Marius A. Burtea, Feb 14 2020


CROSSREFS

Cf. A000010, A008594, A332511, A332513, A332514, A332515, A332516.
Sequence in context: A260747 A032693 A049745 * A304006 A304948 A087683
Adjacent sequences: A332509 A332510 A332511 * A332513 A332514 A332515


KEYWORD

nonn


AUTHOR

Amiram Eldar, Feb 14 2020


STATUS

approved



