login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304006
Number of n X 4 0..1 arrays with every element unequal to 0, 2, 3 or 5 king-move adjacent elements, with upper left element zero.
2
1, 13, 21, 26, 64, 115, 211, 439, 870, 1725, 3513, 7141, 14372, 29438, 60518, 123439, 253860, 523477, 1075787, 2216143, 4575316, 9438222, 19480290, 40253428, 83178619, 171897255, 355448881, 735100437, 1520380599, 3145360038, 6508033432
OFFSET
1,2
COMMENTS
Column 4 of A304010.
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) -6*a(n-2) -9*a(n-4) +8*a(n-5) +36*a(n-6) -29*a(n-7) +34*a(n-8) -88*a(n-9) +8*a(n-10) -70*a(n-11) +205*a(n-12) +66*a(n-13) -377*a(n-14) -29*a(n-15) +420*a(n-16) +897*a(n-17) -1329*a(n-18) -1792*a(n-19) +3267*a(n-20) +1953*a(n-21) -3000*a(n-22) -1986*a(n-23) -1836*a(n-24) +4857*a(n-25) -812*a(n-26) +2460*a(n-27) -5658*a(n-28) -21869*a(n-29) +5879*a(n-30) +37979*a(n-31) +39222*a(n-32) -53345*a(n-33) -60350*a(n-34) +80033*a(n-35) +55646*a(n-36) -80249*a(n-37) -99116*a(n-38) +97246*a(n-39) +113723*a(n-40) -115592*a(n-41) -82690*a(n-42) +63249*a(n-43) +23806*a(n-44) -67251*a(n-45) +52726*a(n-46) +64947*a(n-47) -59223*a(n-48) +4895*a(n-49) +22611*a(n-50) -5950*a(n-51) +1369*a(n-52) +5125*a(n-53) -13309*a(n-54) -19653*a(n-55) +5627*a(n-56) +2405*a(n-57) +1342*a(n-58) +2478*a(n-59) +2088*a(n-60) +435*a(n-61) -1017*a(n-62) -263*a(n-63) -116*a(n-64) +64*a(n-65) -96*a(n-66) +48*a(n-67) for n>70.
EXAMPLE
Some solutions for n=5
..0..0..1..1. .0..1..1..1. .0..1..1..0. .0..1..0..0. .0..0..0..0
..0..0..1..1. .1..0..0..0. .0..1..0..1. .1..0..1..1. .0..0..0..0
..0..0..1..1. .0..1..1..0. .0..0..1..0. .1..0..1..0. .1..1..1..1
..0..0..1..1. .0..1..0..1. .0..1..0..0. .0..1..0..0. .1..1..1..1
..0..0..1..1. .1..0..0..1. .0..1..1..1. .1..0..0..1. .1..1..1..1
CROSSREFS
Cf. A304010.
Sequence in context: A032693 A049745 A332512 * A304948 A087683 A195375
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 04 2018
STATUS
approved