

A332516


Numbers k such that phi(k) == 10 (mod 12), where phi is the Euler totient function (A000010).


6



11, 22, 23, 46, 47, 59, 71, 83, 94, 107, 118, 131, 142, 166, 167, 179, 191, 214, 227, 239, 251, 262, 263, 311, 334, 347, 358, 359, 382, 383, 419, 431, 443, 454, 467, 478, 479, 491, 502, 503, 526, 563, 587, 599, 622, 647, 659, 683, 694, 718, 719, 743, 766, 827
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Dence and Pomerance showed that the asymptotic number of the terms below x is ~ (3/8) * x/log(x).


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000
Thomas Dence and Carl Pomerance, Euler's function in residue classes, in: K. Alladi, P. D. T. A. Elliott, A. Granville and G. Tenebaum (eds.), Analytic and Elementary Number Theory, Developments in Mathematics, Vol. 1, Springer, Boston, MA, 1998, pp. 720, alternative link.


EXAMPLE

23 is a term since phi(23) = 22 == 10 (mod 12).


MATHEMATICA

Select[Range[800], Mod[EulerPhi[#], 12] == 10 &]


PROG

(MAGMA) [k:k in [1..850] EulerPhi(k) mod 12 eq 10]; // Marius A. Burtea, Feb 14 2020


CROSSREFS

Cf. A000010, A017641, A332511, A332512, A332513, A332514, A332515.
Sequence in context: A296746 A095779 A062055 * A066500 A234314 A258738
Adjacent sequences: A332513 A332514 A332515 * A332517 A332518 A332519


KEYWORD

nonn


AUTHOR

Amiram Eldar, Feb 14 2020


STATUS

approved



