|
|
A296746
|
|
Numbers whose base-11 digits d(m), d(m-1), ..., d(0) have #(rises) < #(falls); see Comments.
|
|
4
|
|
|
11, 22, 23, 33, 34, 35, 44, 45, 46, 47, 55, 56, 57, 58, 59, 66, 67, 68, 69, 70, 71, 77, 78, 79, 80, 81, 82, 83, 88, 89, 90, 91, 92, 93, 94, 95, 99, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 132, 242, 253
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296744-A296746 partition the natural numbers. See the guide at A296712.
|
|
LINKS
|
|
|
EXAMPLE
|
The base-11 digits of 253 are 2,1,0; here #(rises) = 0 and #(falls) = 2, so 253 is in the sequence.
|
|
MATHEMATICA
|
z = 200; b = 11; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296744 *)
Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296745 *)
Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296746 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|