

A296748


Numbers n whose base12 digits d(m), d(m1), ..., d(0) have #(rises) > #(falls); see Comments.


4



14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 41, 42, 43, 44, 45, 46, 47, 53, 54, 55, 56, 57, 58, 59, 66, 67, 68, 69, 70, 71, 79, 80, 81, 82, 83, 92, 93, 94, 95, 105, 106, 107, 118, 119, 131, 158, 159, 160, 161, 162, 163
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296747A296749 partition the natural numbers. See the guide at A296712.


LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000


EXAMPLE

The base12 digits of 163 are 1,1,7; here #(rises) = 1 and #(falls) = 0, so that 163 is in the sequence.


MATHEMATICA

z = 200; b = 12; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
Select[Range [z], Count[d[#], 1] == Count[d[#], 1] &] (* A296747 *)
Select[Range [z], Count[d[#], 1] < Count[d[#], 1] &] (* A296748 *)
Select[Range [z], Count[d[#], 1] > Count[d[#], 1] &] (* A296749 *)


CROSSREFS

Cf. A296747, A296749, A296712.
Sequence in context: A142865 A089838 A297278 * A270042 A332924 A048125
Adjacent sequences: A296745 A296746 A296747 * A296749 A296750 A296751


KEYWORD

nonn,base,easy


AUTHOR

Clark Kimberling, Jan 08 2018


STATUS

approved



