|
|
A296745
|
|
Numbers whose base-11 digits d(m), d(m-1), ..., d(0) have #(rises) > #(falls); see Comments.
|
|
4
|
|
|
13, 14, 15, 16, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 30, 31, 32, 37, 38, 39, 40, 41, 42, 43, 49, 50, 51, 52, 53, 54, 61, 62, 63, 64, 65, 73, 74, 75, 76, 85, 86, 87, 97, 98, 109, 134, 135, 136, 137, 138, 139, 140, 141, 142, 145, 146, 147, 148, 149, 150
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296744-A296746 partition the natural numbers. See the guide at A296712.
|
|
LINKS
|
Clark Kimberling, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
The base-11 digits of 150 are 1,2,7; here #(rises) = 2 and #(falls) = 0, so 150 is in the sequence.
|
|
MATHEMATICA
|
z = 200; b = 11; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296744 *)
Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296745 *)
Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296746 *)
|
|
CROSSREFS
|
Cf. A296744, A296746, A296712.
Sequence in context: A020512 A337159 A297275 * A178402 A132580 A138596
Adjacent sequences: A296742 A296743 A296744 * A296746 A296747 A296748
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
Clark Kimberling, Jan 08 2018
|
|
STATUS
|
approved
|
|
|
|