%I #7 Jan 27 2023 19:24:59
%S 11,22,23,33,34,35,44,45,46,47,55,56,57,58,59,66,67,68,69,70,71,77,78,
%T 79,80,81,82,83,88,89,90,91,92,93,94,95,99,100,101,102,103,104,105,
%U 106,107,110,111,112,113,114,115,116,117,118,119,121,132,242,253
%N Numbers whose base-11 digits d(m), d(m-1), ..., d(0) have #(rises) < #(falls); see Comments.
%C A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296744-A296746 partition the natural numbers. See the guide at A296712.
%H Clark Kimberling, <a href="/A296746/b296746.txt">Table of n, a(n) for n = 1..10000</a>
%e The base-11 digits of 253 are 2,1,0; here #(rises) = 0 and #(falls) = 2, so 253 is in the sequence.
%t z = 200; b = 11; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
%t Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296744 *)
%t Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296745 *)
%t Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296746 *)
%Y Cf. A296744, A296745, A296712.
%K nonn,base,easy
%O 1,1
%A _Clark Kimberling_, Jan 08 2018
|