

A332515


Numbers k such that phi(k) == 8 (mod 12), where phi is the Euler totient function (A000010).


6



15, 16, 20, 24, 25, 30, 33, 44, 50, 51, 64, 66, 68, 69, 80, 87, 92, 96, 102, 116, 120, 123, 138, 141, 159, 164, 165, 174, 176, 177, 188, 200, 212, 213, 220, 236, 246, 249, 255, 256, 264, 267, 272, 275, 282, 284, 289, 300, 303, 318, 320, 321, 330, 332, 339, 340
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Dence and Pomerance showed that the asymptotic number of the terms below x is ~ c2 * x/sqrt(log(x)), where c2 = (sqrt(2*sqrt(3))/(3*Pi)) * c3^(1/2) * (2*c3  c4) = 0.3284176245..., c3 = Product_{primes p == 2 (mod 3)} (1 + 1/(p^21)), and c4 = Product_{primes p == 2 (mod 3)} (1  1/(p+1)^2).


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000
Thomas Dence and Carl Pomerance, Euler's function in residue classes, in: K. Alladi, P. D. T. A. Elliott, A. Granville and G. Tenebaum (eds.), Analytic and Elementary Number Theory, Developments in Mathematics, Vol. 1, Springer, Boston, MA, 1998, pp. 720, alternative link.


EXAMPLE

25 is a term since phi(25) = 20 == 8 (mod 12).


MATHEMATICA

Select[Range[400], Mod[EulerPhi[#], 12] == 8 &]


PROG

(MAGMA) [k:k in [1..350] EulerPhi(k) mod 12 eq 8]; // Marius A. Burtea, Feb 14 2020


CROSSREFS

Cf. A000010, A017617, A175646, A332511, A332512, A332513, A332514, A332516.
Sequence in context: A108856 A241750 A039689 * A063530 A160661 A342941
Adjacent sequences: A332512 A332513 A332514 * A332516 A332517 A332518


KEYWORD

nonn


AUTHOR

Amiram Eldar, Feb 14 2020


STATUS

approved



