

A332514


Numbers k such that phi(k) == 6 (mod 12), where phi is the Euler totient function (A000010).


6



7, 9, 14, 18, 19, 27, 31, 38, 43, 49, 54, 62, 67, 79, 81, 86, 98, 103, 127, 134, 139, 151, 158, 162, 163, 199, 206, 211, 223, 243, 254, 271, 278, 283, 302, 307, 326, 331, 343, 361, 367, 379, 398, 422, 439, 446, 463, 486, 487, 499, 523, 542, 547, 566, 571, 607, 614
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Dence and Pomerance showed that the asymptotic number of the terms below x is ~ (3/8) * x/log(x).


LINKS

Thomas Dence and Carl Pomerance, Euler's function in residue classes, in: K. Alladi, P. D. T. A. Elliott, A. Granville and G. Tenebaum (eds.), Analytic and Elementary Number Theory, Developments in Mathematics, Vol. 1, Springer, Boston, MA, 1998, pp. 720, alternative link.


EXAMPLE

19 is a term since phi(19) = 18 == 6 (mod 12).


MATHEMATICA

Select[Range[600], Mod[EulerPhi[#], 12] == 6 &]


PROG

(Magma) [k:k in [1..650] EulerPhi(k) mod 12 eq 6]; // Marius A. Burtea, Feb 14 2020


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



