login
A319877
Numbers whose product of prime indices (A003963) is a square of a squarefree number (A062503).
2
1, 7, 9, 14, 18, 23, 25, 28, 36, 46, 50, 56, 72, 92, 97, 100, 112, 121, 144, 151, 161, 169, 175, 183, 184, 185, 194, 195, 200, 207, 224, 225, 227, 242, 288, 289, 302, 322, 338, 350, 366, 368, 370, 388, 390, 400, 414, 448, 450, 454, 484, 541, 576, 578, 604, 644
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of 2-regular multiset multisystems (meaning all vertex-degrees are 2).
EXAMPLE
The sequence of multiset multisystems whose MM-numbers belong to the sequence begins:
1: {}
7: {{1,1}}
9: {{1},{1}}
14: {{},{1,1}}
18: {{},{1},{1}}
23: {{2,2}}
25: {{2},{2}}
28: {{},{},{1,1}}
36: {{},{},{1},{1}}
46: {{},{2,2}}
50: {{},{2},{2}}
56: {{},{},{},{1,1}}
72: {{},{},{},{1},{1}}
92: {{},{},{2,2}}
97: {{3,3}}
100: {{},{},{2},{2}}
112: {{},{},{},{},{1,1}}
121: {{3},{3}}
144: {{},{},{},{},{1},{1}}
151: {{1,1,2,2}}
161: {{1,1},{2,2}}
169: {{1,2},{1,2}}
175: {{2},{2},{1,1}}
183: {{1},{1,2,2}}
184: {{},{},{},{2,2}}
185: {{2},{1,1,2}}
194: {{},{3,3}}
195: {{1},{2},{1,2}}
200: {{},{},{},{2},{2}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], Or[#==1, SameQ[##, 2]&@@Last/@FactorInteger[Times@@primeMS[#]]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 17 2018
STATUS
approved