login
A319880
Difference between 2^n and the product of primes less than or equal to n.
0
0, 1, 2, 2, 10, 2, 34, -82, 46, 302, 814, -262, 1786, -21838, -13646, 2738, 35506, -379438, -248366, -9175402, -8651114, -7602538, -5505386, -214704262, -206315654, -189538438, -155984006, -88875142, 45342586, -5932822318, -5395951406, -198413006482
OFFSET
0,3
COMMENTS
This sequence shows 2^n is neither a lower bound nor an upper bound for the primorials.
FORMULA
a(n) = 2^n - n#, where n# is the product of primes less than or equal to n (A034386).
a(n) = A000079(n) - A034386(n) .
MAPLE
restart;
with(NumberTheory);
a := n -> 2^n-product(ithprime(i), i = 1 .. PrimeCounting(n)):
0, seq(a(n), n = 1 .. 15); # Stefano Spezia, Nov 05 2018
MATHEMATICA
Table[2^n - Times@@Select[Range[n], PrimeQ], {n, 0, 31}]
PROG
(PARI) a(n) = 2^n - prod(k=1, primepi(n), prime(k)); \\ Michel Marcus, Nov 05 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Alonso del Arte, Sep 30 2018
STATUS
approved