login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317625
a(n) = Sum_{k=1..n} phi(floor(n/k)) where phi is the Euler totient function.
4
1, 2, 4, 5, 8, 8, 13, 12, 16, 17, 24, 18, 27, 26, 32, 31, 40, 32, 45, 36, 46, 51, 64, 42, 57, 58, 68, 61, 78, 60, 83, 68, 80, 85, 100, 74, 99, 94, 110, 91, 116, 90, 121, 104, 116, 127, 152, 100, 131, 122, 144, 137, 166, 130, 161, 136, 162, 171, 202, 126, 171, 164, 182, 163, 190
OFFSET
1,2
LINKS
Olivier Bordellès, Randell Heyman, and Igor E. Shparlinski, On a sum involving the Euler function, arXiv:1808.00188 [math.NT], 2018.
FORMULA
a(n) <= (1/2)*(1 + 1/zeta(2))*n*log(n) + 4*n + sqrt(n)*log(n)/4 + sqrt(n), uniformly for n >= 3.
a(n) >= ((2629/4009)+o(1))*n*log(n)/zeta(2) as n approaches infinity.
Cautious conjecture: a(n) ~ n*log(n)/zeta(2).
EXAMPLE
a(4) = phi(floor(4/1))+phi(floor(4/2))+phi(floor(4/3))+phi(floor(4/4)) = phi(4)+phi(2)+phi(1)+phi(1) = 2+1+1+1 = 5.
MAPLE
with(numtheory): S:=0: for x to 30 do: for m to x do: S := S+phi(trunc(x/m)) end do; print(x, S); S := 0:end do:
MATHEMATICA
Array[Sum[EulerPhi[Floor[#/k]], {k, #}] &, 65] (* Michael De Vlieger, Aug 02 2018 *)
PROG
(PARI) a(n) = sum(x=1, n, eulerphi(n\x)); \\ Michel Marcus, Aug 02 2018
CROSSREFS
Sequence in context: A061884 A286002 A029935 * A308447 A350506 A123291
KEYWORD
nonn
AUTHOR
Randell G Heyman, Aug 02 2018
EXTENSIONS
More terms from Michel Marcus, Aug 02 2018
STATUS
approved