The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308447 Expansion of Sum_{k>=1} mu(k)*log(1 + x^k/((1 - x^k)*(1 - 2*x^k)))/k. 0
 1, 2, 4, 5, 8, 8, 16, 25, 52, 98, 192, 345, 640, 1162, 2164, 4050, 7680, 14534, 27648, 52479, 99956, 190554, 364544, 698525, 1341848, 2580790, 4971616, 9587565, 18513920, 35790276, 69271552, 134211600, 260297012, 505286430, 981714296, 1908881520, 3714580480, 7233615306 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Inverse Euler transform of A000225. LINKS FORMULA -1 + Product_{n>=1} 1/(1 - x^n)^a(n) = g.f. of A000225. a(n) ~ 2^n/n. - Vaclav Kotesovec, May 28 2019 MATHEMATICA nmax = 38; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + x^k/((1 - x^k) (1 - 2 x^k))]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest nmax = 50; s = ConstantArray[0, nmax]; Do[s[[j]] = j*(2^ j - 1) - Sum[s[[d]]*(2^(j - d) - 1), {d, 1, j - 1}], {j, 1, nmax}]; Table[Sum[MoebiusMu[k/d]*s[[d]], {d, Divisors[k]}]/k, {k, 1, nmax}] (* Vaclav Kotesovec, Aug 10 2019 *) CROSSREFS Cf. A000225, A001037, A008683, A059966, A319918. Sequence in context: A286002 A029935 A317625 * A123291 A099402 A248387 Adjacent sequences:  A308444 A308445 A308446 * A308448 A308449 A308450 KEYWORD nonn AUTHOR Ilya Gutkovskiy, May 27 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 16:16 EDT 2021. Contains 347485 sequences. (Running on oeis4.)