login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A308448 Expansion of Sum_{k>=1} mu(k)*log(1 + x^k/(1 - 2*x^k - x^(2*k)))/k. 0
1, 1, 3, 6, 14, 28, 64, 135, 300, 653, 1458, 3223, 7240, 16228, 36678, 83025, 188910, 430730, 985752, 2260866, 5199612, 11982591, 27673826, 64027215, 148399514, 344490100, 800886300, 1864461210, 4346031950, 10142519585, 23696421808, 55420499295, 129742683174, 304014091125 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Inverse Euler transform of A000129.

LINKS

Table of n, a(n) for n=1..34.

FORMULA

-1 + Product_{n>=1} 1/(1 - x^n)^a(n) = g.f. of A000129.

a(n) ~ (1 + sqrt(2))^n/n. - Vaclav Kotesovec, May 28 2019

MATHEMATICA

nmax = 34; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + x^k/(1 - 2 x^k - x^(2 k))]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest

nmax = 40; s = ConstantArray[0, nmax]; Do[s[[j]] = j*Fibonacci[j, 2] - Sum[s[[d]]*Fibonacci[j - d, 2], {d, 1, j - 1}], {j, 1, nmax}]; Table[Sum[MoebiusMu[k/d]*s[[d]], {d, Divisors[k]}]/k, {k, 1, nmax}] (* Vaclav Kotesovec, Aug 10 2019 *)

CROSSREFS

Cf. A000129, A006206, A008683, A060280, A261329.

Sequence in context: A224840 A132891 A200544 * A055890 A306884 A219768

Adjacent sequences:  A308445 A308446 A308447 * A308449 A308450 A308451

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, May 27 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 02:27 EDT 2021. Contains 345413 sequences. (Running on oeis4.)