login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308448
Expansion of Sum_{k>=1} mu(k)*log(1 + x^k/(1 - 2*x^k - x^(2*k)))/k.
1
1, 1, 3, 6, 14, 28, 64, 135, 300, 653, 1458, 3223, 7240, 16228, 36678, 83025, 188910, 430730, 985752, 2260866, 5199612, 11982591, 27673826, 64027215, 148399514, 344490100, 800886300, 1864461210, 4346031950, 10142519585, 23696421808, 55420499295, 129742683174, 304014091125
OFFSET
1,3
COMMENTS
Inverse Euler transform of A000129.
LINKS
FORMULA
-1 + Product_{n>=1} 1/(1 - x^n)^a(n) = g.f. of A000129.
a(n) ~ (1 + sqrt(2))^n/n. - Vaclav Kotesovec, May 28 2019
"CHK" (necklace, identity, unlabeled) transform of A000045. - Alois P. Heinz, May 19 2022
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(j-1-a(i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> combinat[fibonacci](n)+b(n, n-1):
seq(a(n), n=1..34); # Alois P. Heinz, May 19 2022
MATHEMATICA
nmax = 34; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + x^k/(1 - 2 x^k - x^(2 k))]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
nmax = 40; s = ConstantArray[0, nmax]; Do[s[[j]] = j*Fibonacci[j, 2] - Sum[s[[d]]*Fibonacci[j - d, 2], {d, 1, j - 1}], {j, 1, nmax}]; Table[Sum[MoebiusMu[k/d]*s[[d]], {d, Divisors[k]}]/k, {k, 1, nmax}] (* Vaclav Kotesovec, Aug 10 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 27 2019
STATUS
approved