Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 May 20 2022 04:56:48
%S 1,1,3,6,14,28,64,135,300,653,1458,3223,7240,16228,36678,83025,188910,
%T 430730,985752,2260866,5199612,11982591,27673826,64027215,148399514,
%U 344490100,800886300,1864461210,4346031950,10142519585,23696421808,55420499295,129742683174,304014091125
%N Expansion of Sum_{k>=1} mu(k)*log(1 + x^k/(1 - 2*x^k - x^(2*k)))/k.
%C Inverse Euler transform of A000129.
%H Alois P. Heinz, <a href="/A308448/b308448.txt">Table of n, a(n) for n = 1..1000</a>
%F -1 + Product_{n>=1} 1/(1 - x^n)^a(n) = g.f. of A000129.
%F a(n) ~ (1 + sqrt(2))^n/n. - _Vaclav Kotesovec_, May 28 2019
%F "CHK" (necklace, identity, unlabeled) transform of A000045. - _Alois P. Heinz_, May 19 2022
%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p add(binomial(j-1-a(i), j)*b(n-i*j, i-1), j=0..n/i)))
%p end:
%p a:= n-> combinat[fibonacci](n)+b(n, n-1):
%p seq(a(n), n=1..34); # _Alois P. Heinz_, May 19 2022
%t nmax = 34; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + x^k/(1 - 2 x^k - x^(2 k))]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%t nmax = 40; s = ConstantArray[0, nmax]; Do[s[[j]] = j*Fibonacci[j, 2] - Sum[s[[d]]*Fibonacci[j - d, 2], {d, 1, j - 1}], {j, 1, nmax}]; Table[Sum[MoebiusMu[k/d]*s[[d]], {d, Divisors[k]}]/k, {k, 1, nmax}] (* _Vaclav Kotesovec_, Aug 10 2019 *)
%Y Cf. A000045, A000129, A006206, A008683, A060280, A261329.
%K nonn
%O 1,3
%A _Ilya Gutkovskiy_, May 27 2019