login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055890
CIK transform of partition numbers A000041.
3
1, 1, 3, 6, 14, 28, 68, 148, 358, 845, 2061, 5018, 12458, 30922, 77557, 195154, 493809, 1253614, 3195210, 8166758, 20935826, 53799072, 138571332, 357647566, 924846881, 2395702829, 6215779536, 16150985916, 42024260088, 109485000778
OFFSET
0,3
LINKS
C. G. Bower, Transforms (2)
P. Flajolet and M. Soria, The Cycle Construction. In SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
P. Flajolet and M. Soria, The Cycle Construction. [pdf file]
MATHEMATICA
nmax = 30;
f[x_] = 1/Product[1 - x^n, {n, 1, nmax}] - 1;
gf = 1+Sum[(EulerPhi[n]/n)*Log[1/(1 - f[x^n])] + O[x]^nmax, {n, 1, nmax}];
CoefficientList[gf, x] (* Jean-François Alcover, Jul 29 2018, from PARI *)
PROG
(PARI)
N = 66; x = 'x + O('x^N);
f(x) = 1 / prod(n=1, N, 1-x^n ) - 1; \\ A055890
gf = 1 + sum(n=1, N, eulerphi(n)/n*log(1/(1-f(x^n))) );
v = Vec(gf)
/* Joerg Arndt, Jan 21 2013 */
CROSSREFS
Sequence in context: A132891 A200544 A308448 * A306884 A219768 A038359
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jun 09 2000
STATUS
approved