OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..3171
N. J. A. Sloane, Transforms
FORMULA
G.f.: exp(Sum_{k>=1} x^k/(k*(1 - x^k)*(1 - 2*x^k))).
a(n) ~ A247003^2 * exp(2*sqrt(n) - 1/2) * 2^(n-1) / (A065446 * sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Sep 15 2021
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
d*(2^d-1), d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Aug 13 2021
MATHEMATICA
nmax = 31; CoefficientList[Series[Product[1/(1 - x^k)^(2^k - 1), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 31; CoefficientList[Series[Exp[Sum[x^k/(k (1 - x^k) (1 - 2 x^k)), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (2^d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 31}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 01 2018
STATUS
approved