|
|
A319918
|
|
Expansion of Product_{k>=1} 1/(1 - x^k)^(2^k-1).
|
|
5
|
|
|
1, 1, 4, 11, 32, 84, 230, 597, 1567, 4020, 10286, 25994, 65387, 163065, 404617, 997687, 2448220, 5977334, 14530835, 35173496, 84814982, 203760809, 487845377, 1164191563, 2769721073, 6570218773, 15542642042, 36671354125, 86306246887, 202637312099, 474684979292, 1109539437382
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
G.f.: exp(Sum_{k>=1} x^k/(k*(1 - x^k)*(1 - 2*x^k))).
|
|
MAPLE
|
a:=series(mul(1/(1-x^k)^(2^k-1), k=1..100), x=0, 32): seq(coeff(a, x, n), n=0..31); # Paolo P. Lava, Apr 02 2019
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
d*(2^d-1), d=numtheory[divisors](j)), j=1..n)/n)
end:
|
|
MATHEMATICA
|
nmax = 31; CoefficientList[Series[Product[1/(1 - x^k)^(2^k - 1), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 31; CoefficientList[Series[Exp[Sum[x^k/(k (1 - x^k) (1 - 2 x^k)), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (2^d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 31}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|