login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101291
Sum of all numbers with n digits.
7
45, 4905, 494550, 49495500, 4949955000, 494999550000, 49499995500000, 4949999955000000, 494999999550000000, 49499999995500000000, 4949999999955000000000, 494999999999550000000000, 49499999999995500000000000, 4949999999999955000000000000
OFFSET
1,1
COMMENTS
All terms are multiples of 45: A101291 = 45*(1, 109, 10990, 1099900, 109999000, ...), cf. formula. - M. F. Hasler, Nov 26 2008
All terms have digital root 9. - Halfdan Skjerning, Jun 18 2019
REFERENCES
Edward J. Barbeau, Murray S. Klamkin, William O. J. Moser, Five Hundred Mathematical Challenges, Problem 34 page 60, MAA Washington DC 1995. [Lekraj Beedassy, Mar 02 2017]
FORMULA
a(n) = 99*100^n/200 - 9*10^n/20 = (99*100^n - 90*10^n)/200 = 9*(11*10^(n-1) - 1)*10^(n-1)/2 = 45*(11*10^(2n-3) - 10^(n-2)). - M. F. Hasler, Nov 26 2008
Expanding and rearranging, we have a(n) = (494+1)*10^(2n-3) - (100-55)*10^(n-2) = 494*10^(2n-3) + (10^(n-3) - 1)*10^n + 55*10^(n-2) = 494*10^(2n-3) + 99...9 (n-3 times)*10^n + 55*10^(n-2). Thus, for n>2, a(n) = 494, followed by (n-3) times digit 9, followed by 55, followed by (n-2) times digit 0, i.e., 494 99...9(n-3) times 55 00...0(n-2) times. - Lekraj Beedassy, Mar 02 2017
G.f.: 45*x*(1 - x)/(1 - 110*x + 1000*x^2). - Arkadiusz Wesolowski, Jul 12 2012
EXAMPLE
a(1) = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45;
a(2) = 10 + 11 + 12 + 13 + 14 + ... + 97 + 98 + 99 = 4905;
a(3) = 100 + 101 + 102 + 103 + ... + 997 + 998 + 999 = 494550.
MAPLE
sum(x, x=1..9), sum(x, x=10..99), sum(x, x=100..999), sum(x, x=1000..9999), sum(x, x=10000..99999), sum(x, x=100000..999999), sum(x, x=1000000..9999999), sum(x, x=10000000..99999999);
MATHEMATICA
f[n_] := 10^n(10^n - 1)/2; Table[f[n] - f[n - 1], {n, 15}] (* Robert G. Wilson v Dec 24 2004 *)
PROG
(PARI) A101291(n)=(n=10^(n-1))*(11*n-1)\2*9 \\ M. F. Hasler, Nov 26 2008
(Magma) [9*(11*10^(2*n-2) -10^(n-1))/2: n in [1..15]]; // G. C. Greubel, Jul 07 2019
(Sage) [9*(11*10^(2*n-2) -10^(n-1))/2 for n in (1..15)] # G. C. Greubel, Jul 07 2019
(GAP) List([1..15], n-> 9*(11*10^(2*n-2) -10^(n-1))/2 ) # G. C. Greubel, Jul 07 2019
CROSSREFS
First differences of A037182.
Sequence in context: A328356 A375052 A093533 * A061542 A037182 A178632
KEYWORD
nonn,base,easy
AUTHOR
Jorge Coveiro, Dec 21 2004
EXTENSIONS
More terms from Robert G. Wilson v, Dec 24 2004
STATUS
approved