The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328356 a(n) is the sum of all positive integers whose decimal expansion is up to n digits and does not contain the 0 digit. 8
 0, 45, 4500, 409095, 36855450, 3317322645, 298562027400, 26870609370195, 2418355085455350, 217651959870221745, 19588676407933119300, 1762980876890499197295, 158668278921733593899250, 14280145102970321446216845, 1285213059267457612117075200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Colin Barker, Table of n, a(n) for n = 0..500 Pierre-Alain Sallard, Integer sequences A328348 and A328350 to A328356 Index entries for linear recurrences with constant coefficients, signature (100,-909,810). FORMULA a(n) = (80*90^n - 89*9^n + 9) * 5 / 712. a(n) = 91*a(n-1) - 90*a(n-2) + 45*9^(n-1) for n > 1. G.f.: 45*x / ((1 - x)*(1 - 9*x)*(1 - 90*x)). - Colin Barker, Dec 10 2019 EXAMPLE For n=2, the sum of all integers from 1 to 99 except those containing a zero (i.e., except multiples of 10: 10, 20, ..., 90) is equal to a(2) = 4500. For n=3, the sum of all integers from 1 to 999 except those containing a zero is equal to a(3) = 409095. PROG (Python) [(80*90**n-89*9**n+9)*5//712 for n in range(20)] (PARI) concat(0, Vec(45*x / ((1 - x)*(1 - 9*x)*(1 - 90*x)) + O(x^15))) \\ Colin Barker, Dec 10 2019 CROSSREFS Cf. A328348, A328350, A328351, A328352, A328353, A328354, A328355. Sequence in context: A220094 A274603 A036521 * A093533 A101291 A061542 Adjacent sequences:  A328353 A328354 A328355 * A328357 A328358 A328359 KEYWORD nonn,base,easy AUTHOR Pierre-Alain Sallard, Dec 10 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 26 08:00 EDT 2021. Contains 348267 sequences. (Running on oeis4.)