login
A282035
Sum of quadratic residues of (n-th prime == 3 mod 4).
19
1, 7, 22, 76, 92, 186, 430, 423, 767, 1072, 994, 1343, 1577, 2369, 2675, 3683, 3930, 4587, 5134, 6520, 6012, 7518, 7831, 8955, 10761, 11596, 12258, 12428, 14809, 15517, 16802, 19527, 23025, 21148, 26811, 29148, 28720, 31929, 35247, 33321, 41900, 41807, 44778, 47844, 51856, 52771, 51253, 57466
OFFSET
1,2
LINKS
Aebi, Christian, and Grant Cairns. Sums of Quadratic residues and nonresidues, arXiv preprint arXiv:1512.00896 (2015).
MAPLE
with(numtheory):
a:=[]; m:=[]; d:=[];
for i1 from 1 to 200 do
p:=ithprime(i1);
if (p mod 4) = 3 then
sp:=0; sm:=0;
for j from 1 to p-1 do
if legendre(j, p)=1 then sp:=sp+j; else sm:=sm+j; fi; od;
a:=[op(a), sp]; m:=[op(m), sm]; d:=[op(d), sm-sp];
fi;
od:
a; m; d; # A282035, A282036, A282037
MATHEMATICA
Table[Table[Mod[a^2, p], {a, 1, (p-1)/2}]//Total, {p, Select[Prime[Range[100]], Mod[#, 4]==3 &]}] (* Vincenzo Librandi, Feb 21 2017 *)
PROG
(PARI) do(p)=sum(k=1, p-1, k^2%p)/2
apply(do, select(p->p%4==3, primes(100))) \\ Charles R Greathouse IV, Feb 21 2017
CROSSREFS
Sums of residues, nonresidues, and their differences, for p == 1 mod 4, p == 3 mod 4, and all p: A171555; A282035, A282036, A282037; A076409, A125615, A282038.
Sequence in context: A085287 A278767 A286186 * A302273 A151822 A302724
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 20 2017
STATUS
approved