

A282032


Additive number system based on U.S. coins.


3



1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Any positive integer can be written uniquely as a sum of at most 5 numbers, one from each row of the following array:
1,2,3,4;
5,10,15,20;
25;
50;
100, 200, 300, 400, 500, ...
(the last row being infinite).


LINKS

Colin Barker, Table of n, a(n) for n = 1..1000
Michael Maltenfort, Characterizing Additive Systems, The American Mathematical Monthly 124.2 (2017): 132148. See Fig. 2.
Index entries for linear recurrences with constant coefficients, signature (2,1).


FORMULA

From Colin Barker, Apr 16 2020: (Start)
G.f.: x*(1 + 4*x^5 + 20*x^9 + 25*x^10 + 50*x^11) / (1  x)^2.
a(n) = 2*a(n1)  a(n2) for n>11.
(End)


PROG

(PARI) Vec(x*(1 + 4*x^5 + 20*x^9 + 25*x^10 + 50*x^11) / (1  x)^2 + O(x^50)) \\ Colin Barker, Apr 16 2020


CROSSREFS

A032174 and A282034 are two other examples of additive number systems.
A282033 gives a very similar family of sets which is not an additive system.
Sequence in context: A032543 A140730 A273732 * A205962 A134220 A179146
Adjacent sequences: A282029 A282030 A282031 * A282033 A282034 A282035


KEYWORD

nonn,tabf,easy


AUTHOR

N. J. A. Sloane, Feb 20 2017


STATUS

approved



