login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282037
Let p = n-th prime == 3 mod 4; a(n) = (sum of quadratic nonresidues mod p) - (sum of quadratic residues mod p).
7
1, 7, 11, 19, 69, 93, 43, 235, 177, 67, 497, 395, 249, 515, 321, 635, 655, 417, 1057, 163, 1837, 895, 2483, 1791, 633, 1561, 1135, 3585, 1757, 3419, 2981, 849, 921, 5909, 993, 1735, 6821, 3303, 1137, 6511, 3771, 9051, 6585, 2215, 3241, 3269, 11975, 3409, 4419, 1497, 10563, 2615, 1641, 5067, 2855
OFFSET
1,2
COMMENTS
Equals A282036 - A282035.
LINKS
Christian Aebi and Grant Cairns. Sums of Quadratic residues and nonresidues, arXiv preprint arXiv:1512.00896 [math.NT] (2015).
MAPLE
with(numtheory):
a:=[]; m:=[]; d:=[];
for i1 from 1 to 200 do
p:=ithprime(i1);
if (p mod 4) = 3 then
sp:=0; sm:=0;
for j from 1 to p-1 do
if legendre(j, p)=1 then sp:=sp+j; else sm:=sm+j; fi; od;
a:=[op(a), sp]; m:=[op(m), sm]; d:=[op(d), sm-sp];
fi;
od:
a; m; d; # A282035, A282036, A282037
MATHEMATICA
sum[p_] := Total[If[JacobiSymbol[#, p] == 1, -#, #]& /@ Range[p-1]];
sum /@ Select[Prime[Range[200]], Mod[#, 4] == 3&] (* Jean-François Alcover, Aug 31 2018 *)
CROSSREFS
Sums of residues, nonresidues, and their differences, for p == 1 mod 4, p == 3 mod 4, and all p: A171555; A282035, A282036, A282037; A076409, A125615, A282038.
Sequence in context: A323109 A023267 A319224 * A050562 A321806 A057190
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 20 2017
STATUS
approved