This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286307 a(n) is the numerator of r(n), where r(n) = r(n-1) + r(n-2)/(2*(n-1)) with r(0) = 0, r(1) = 1. 2
 0, 1, 1, 5, 17, 151, 823, 10631, 15871, 1344097, 12731713, 266731133, 3061359593, 15281334539, 1030023060151, 29833932429263, 461929309281059, 15229246883432833, 53257613193371021, 9845267571825141941, 191853269052081088769, 462422990938113014567, 168922073145947967975799 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Robert Israel, Table of n, a(n) for n = 0..426 FORMULA From Wolfdieter Lang, Jun 07 2017: (Start) G.f. of {r(n)}_{n>=0}: x*exp(-x/2)/(1-x)^(3/2). a(n) = numerator(r(n)). See the name for the recurrence of r(n). (End) MAPLE R[0]:= 0: R[1]:= 1: A[0]:= 0: A[1]:= 1: for n from 2 to 30 do   R[n]:= R[n-1] + R[n-2]/(2*(n-1));   A[n]:= numer(R[n]); od: seq(A[i], i=0..30); # Robert Israel, May 25 2017 MATHEMATICA Numerator[RecurrenceTable[{r[n] == r[n - 1] + r[n - 2]/(2 (n - 1)), r[0] == 0, r[1] == 1}, r, {n, 0, 25}]] PROG (PARI) a(n) = if(n < 2, return(n)); n++; my(v=vector(n)); v[1]=0; v[2] = 1; for(i = 3, n, v[i] = v[i-1] + v[i-2]/(2*i - 4)); numerator(v[#v]) \\ David A. Corneth, May 14 2017 CROSSREFS Cf. A019609, A268363. Sequence in context: A177509 A160611 A281429 * A119769 A182066 A090886 Adjacent sequences:  A286304 A286305 A286306 * A286308 A286309 A286310 KEYWORD nonn,easy AUTHOR Terry D. Grant, May 05 2017 EXTENSIONS Name changed, a(0) and a(1) added by David A. Corneth, May 14 2017 a(20)-a(22) from David A. Corneth, May 21 2017 Name corrected by Robert Israel, May 25 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 09:31 EDT 2019. Contains 328315 sequences. (Running on oeis4.)