login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286307
a(n) is the numerator of r(n), where r(n) = r(n-1) + r(n-2)/(2*(n-1)) with r(0) = 0, r(1) = 1.
2
0, 1, 1, 5, 17, 151, 823, 10631, 15871, 1344097, 12731713, 266731133, 3061359593, 15281334539, 1030023060151, 29833932429263, 461929309281059, 15229246883432833, 53257613193371021, 9845267571825141941, 191853269052081088769, 462422990938113014567, 168922073145947967975799
OFFSET
0,4
LINKS
FORMULA
From Wolfdieter Lang, Jun 07 2017: (Start)
G.f. of {r(n)}_{n>=0}: x*exp(-x/2)/(1-x)^(3/2).
a(n) = numerator(r(n)). See the name for the recurrence of r(n). (End)
MAPLE
R[0]:= 0: R[1]:= 1: A[0]:= 0: A[1]:= 1:
for n from 2 to 30 do
R[n]:= R[n-1] + R[n-2]/(2*(n-1));
A[n]:= numer(R[n]);
od:
seq(A[i], i=0..30); # Robert Israel, May 25 2017
MATHEMATICA
Numerator[RecurrenceTable[{r[n] == r[n - 1] + r[n - 2]/(2 (n - 1)), r[0] == 0, r[1] == 1}, r, {n, 0, 25}]]
PROG
(PARI) a(n) = if(n < 2, return(n)); n++; my(v=vector(n)); v[1]=0; v[2] = 1; for(i = 3, n, v[i] = v[i-1] + v[i-2]/(2*i - 4)); numerator(v[#v]) \\ David A. Corneth, May 14 2017
CROSSREFS
Sequence in context: A177509 A160611 A281429 * A119769 A182066 A090886
KEYWORD
nonn,easy
AUTHOR
Terry D. Grant, May 05 2017
EXTENSIONS
Name changed, a(0) and a(1) added by David A. Corneth, May 14 2017
a(20)-a(22) from David A. Corneth, May 21 2017
Name corrected by Robert Israel, May 25 2017
STATUS
approved