login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281429
E.g.f.: C(x) + S(x) = exp( Integral C(x)^4 dx ) where C(x) and S(x) is described by A281428 and A281427, respectively.
0
1, 1, 1, 5, 17, 145, 865, 10325, 88865, 1357825, 15335425, 284963525, 3993275825, 87274812625, 1462392957025, 36716097543125, 716611617346625, 20309401097610625, 452780458211706625, 14290053364475013125, 358439197464543820625, 12462411363013047060625
OFFSET
0,4
EXAMPLE
E.g.f: C(x) + S(x) = 1 + x + x^2/2! + 5*x^3/3! + 17*x^4/4! + 145*x^5/5! + 865*x^6/6! + 10325*x^7/7! + 88865*x^8/8! + 1357825*x^9/9! + 15335425*x^10/10! + 284963525*x^11/11! + 3993275825*x^12/12! + 87274812625*x^13/13! + 1462392957025*x^14/14! + 36716097543125*x^15/15! + 716611617346625*x^16/16! + 20309401097610625*x^17/17! + 452780458211706625*x^18/18! + 14290053364475013125*x^19/19! + 358439197464543820625*x^20/20! +...
where log( C(x) + S(x) ) = Integral C(x)^4 dx, and
C(x)^4 = 1 + 4*x^2/2! + 104*x^4/4! + 6880*x^6/6! + 855680*x^8/8! + 171673600*x^10/10! + 50628300800*x^12/12! + 20616410214400*x^14/14! + 11081874771968000*x^16/16! + 7600553402810368000*x^18/18! + 6477130108444835840000*x^20/20! +...
PROG
(PARI) {a(n) = my(S=x, C=1); for(i=0, n, S = intformal( C^5 +x*O(x^n)); C = 1 + intformal( S*C^4 ) ); n!*polcoeff(C+S, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A181922 A177509 A160611 * A286307 A119769 A182066
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 01 2017
STATUS
approved