login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281431 E.g.f. S(x) satisfies: S(x) = Integral (1 + S(x)^2)^3 dx. 1
1, 6, 216, 19296, 3200256, 849678336, 329902212096, 176210323070976, 123889924672782336, 110895584511900450816, 123119226530619884568576, 166015794146482719037587456, 267231655288799665792971964416, 506138971421813256899173596266496, 1114219301421887004276203102410899456, 2821068813384522963411318522740301889536, 8139956209849296948206537756832040061239296 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..17.

FORMULA

C(x)^2 - S(x)^2 = 1 and S'(x) = C(x)^6, where C(x) is described by A281432.

MATHEMATICA

terms = 20; max = 2 terms; se = (1/8)*((x*(5+3x^2))/(1+x^2)^2+3*ArcTan[x]) +O[x]^max; coes = CoefficientList[InverseSeries[se, x], x]*Range[0, max-1 ]!; Partition[coes, 2][[All, 2]] (* Jean-François Alcover, Mar 01 2017 *)

PROG

(PARI) {a(n) = my(S=x, C=1); for(i=1, n, S = intformal( C^6 +x*O(x^(2*n))); C = 1 + intformal( S*C^5 ) ); (2*n-1)!*polcoeff(S, 2*n-1)}

for(n=1, 30, print1(a(n), ", "))

CROSSREFS

Sequence in context: A154023 A013711 A300593 * A109354 A193613 A194503

Adjacent sequences:  A281428 A281429 A281430 * A281432 A281433 A281434

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 20:22 EST 2021. Contains 349567 sequences. (Running on oeis4.)