The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A281431 E.g.f. S(x) satisfies: S(x) = Integral (1 + S(x)^2)^3 dx. 1
 1, 6, 216, 19296, 3200256, 849678336, 329902212096, 176210323070976, 123889924672782336, 110895584511900450816, 123119226530619884568576, 166015794146482719037587456, 267231655288799665792971964416, 506138971421813256899173596266496, 1114219301421887004276203102410899456, 2821068813384522963411318522740301889536, 8139956209849296948206537756832040061239296 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA C(x)^2 - S(x)^2 = 1 and S'(x) = C(x)^6, where C(x) is described by A281432. MATHEMATICA terms = 20; max = 2 terms; se = (1/8)*((x*(5+3x^2))/(1+x^2)^2+3*ArcTan[x]) +O[x]^max; coes = CoefficientList[InverseSeries[se, x], x]*Range[0, max-1 ]!; Partition[coes, 2][[All, 2]] (* Jean-François Alcover, Mar 01 2017 *) PROG (PARI) {a(n) = my(S=x, C=1); for(i=1, n, S = intformal( C^6 +x*O(x^(2*n))); C = 1 + intformal( S*C^5 ) ); (2*n-1)!*polcoeff(S, 2*n-1)} for(n=1, 30, print1(a(n), ", ")) CROSSREFS Sequence in context: A154023 A013711 A300593 * A109354 A193613 A194503 Adjacent sequences:  A281428 A281429 A281430 * A281432 A281433 A281434 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 21 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 20:22 EST 2021. Contains 349567 sequences. (Running on oeis4.)