OFFSET
0,3
FORMULA
C(x)^2 - S(x)^2 = 1 and C(x) = 1 + Integral C(x)^5*S(x) dx, where S(x) is described by A281431.
MATHEMATICA
terms = 20; max = 2terms; se = Series[(1/8)*((x*(5+3x^2))/(1+x^2)^2 + 3* ArcTan[x]), {x, 0, max}]; s[x_] = InverseSeries[se, x] // Normal; coes = CoefficientList[Sqrt[1+s[x]^2]+O[x]^(max+1), x]*Range[0, max]!; Partition[ coes, 2][[All, 1]] (* Jean-François Alcover, Mar 01 2017 *)
PROG
(PARI) {a(n) = my(S=x, C=1); for(i=0, n, S = intformal( C^6 +x*O(x^(2*n))); C = 1 + intformal( S*C^5 ) ); (2*n)!*polcoeff(C, 2*n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 21 2017
STATUS
approved