login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287596
a(n) is the denominator of r(n), where r(n) = r(n-1) + r(n-2)/(2*(n-1)) with r(0) = 0, r(1) = 1.
0
1, 1, 1, 4, 12, 96, 480, 5760, 8064, 645120, 5806080, 116121600, 1277337600, 6131220480, 398529331200, 11158821273600, 167382319104000, 5356234211328000, 18211196318515200, 3278015337332736000, 62282291409321984000, 146546568021934080000, 52317124783830466560000
OFFSET
0,4
COMMENTS
The numerators are in A286307.
From Wolfdieter Lang, Jun 07 2017: (Start)
According to a Benoit Cloitre Aug 14 2003 formula in A019609 lim_{n-> oo} 4*n/r(n-1)^2 = Pi*e.
r(n+1) seems to be A268363(n) = 2^floor(n/2) * n!, n >= 0, up to n = 7, 12, 17, 20, 22, 27, 31, 32, 34,... (End)
FORMULA
a(n) = denominator(r(n)), where r(n) = r(n-1) + r(n-2)/2*(n-2) with r(0)=0 and r(1)=1.
G.f. of {r(n)}_{n>=0}: x*exp(-x/2)/(1-x)^(3/2). - Wolfdieter Lang, Jun 07 2017
MATHEMATICA
Denominator[RecurrenceTable[{r[n] == r[n - 1] + r[n - 2]/(2 (n - 1)), r[0] == 0, r[1] == 1}, r, {n, 0, 22}]]
PROG
(PARI)
a(n) = if(n < 2, return(n)); n++; my(v=vector(n)); v[1]=0; v[2] = 1; for(i = 3, n, v[i] = v[i-1] + v[i-2]/(2*i - 4)); denominator(v[#v])
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Terry D. Grant, May 27 2017
STATUS
approved