login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061573
a(n) = (n!)^2*Sum_{k=1..n} 1/k!.
3
1, 6, 60, 984, 24720, 890640, 43646400, 2793409920, 226266566400, 22626660268800, 2737825932441600, 394246934750592000, 66627731979077068800, 13059035467986283776000, 2938282980298221523968000, 752200442956365632925696000, 217385928014390023602954240000
OFFSET
1,2
LINKS
FORMULA
Recurrence: a(1) = 1, a(2) = 6, a(n) = n*(n+1)*a(n-1) - n*(n-1)^2*a(n-2) for n >=3. The sequence b(n) = n!^2 also satisfies this recurrence with the initial conditions b(1) = 1 and b(2) = 4. Hence we have the finite continued fraction expansion a(n)/b(n) = 1/(1-2/(6-12/(12-...-n*(n-1)^2/(n*(n+1))))). Lim_{n -> infinity} a(n)/b(n) = e - 1 = 1/(1-2/(6-12/(12-...-n*(n-1)^2/(n*(n+1))-...))) = 1/(1-1/(3-2/(4-...-n/(n+2)-...))). Cf. A000522 and A061572. - Peter Bala, Jul 10 2008
a(n) = n!*A002627(n). - R. J. Mathar, Mar 18 2017
Sum_{n>=1} a(n) * x^n / (n!)^2 = (exp(x) - 1) / (1 - x). - Ilya Gutkovskiy, Jul 15 2021
MATHEMATICA
Table[(n!)^2 Sum[1/k!, {k, n}], {n, 20}] (* Harvey P. Dale, Dec 02 2021 *)
PROG
(PARI) a(n) = { n!^2*sum(k=1, n, 1/k!) } \\ Harry J. Smith, Jul 24 2009
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
N. J. A. Sloane, May 19 2001
STATUS
approved