The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061572 a(n) = (n!)^2 * Sum_{k=1..n} 1/(k^2*(k-1)!). 3
 1, 5, 47, 758, 18974, 683184, 33476736, 2142516144, 173543847984, 17354385161280, 2099880608143680, 302382807612606720, 51102694487009537280, 10016128119460096327680, 2253628826878608852019200, 576928979680925173791283200, 166732475127787396148470732800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Harry J. Smith, Table of n, a(n) for n = 1..100 FORMULA Recurrence: a(1) = 1, a(2) = 5, a(n) = (n^2+n-1)*a(n-1) - (n-1)^3*a(n-2) for n >= 3. The sequence b(n) = n!^2 also satisfies this recurrence with the initial conditions b(1) = 1 and b(2) = 4. Hence we have the finite continued fraction expansion a(n)/b(n) = 1/(1-1^3/(5-2^3/(11-...-(n-1)^3/(n^2+n-1)))). Lim n -> infinity a(n)/b(n) = Ei(1) - gamma = 1/(1-1^3/(5-2^3/(11-...-(n-1)^3/(n^2+n-1)-...))). Cf. A061573. - Peter Bala, Jul 10 2008 PROG (PARI) { for (n=1, 100, write("b061572.txt", n, " ", n!^2*sum(k=1, n, 1/(k^2*(k-1)!))) ) } \\ Harry J. Smith, Jul 24 2009 CROSSREFS Cf. A061573. Sequence in context: A183773 A247982 A222078 * A140422 A145564 A159480 Adjacent sequences:  A061569 A061570 A061571 * A061573 A061574 A061575 KEYWORD nonn AUTHOR N. J. A. Sloane, May 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 04:01 EDT 2021. Contains 343146 sequences. (Running on oeis4.)