login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061575 Number of planar planted trees with n non-root nodes and without isolated 2-valent nodes. 0
0, 1, 0, 2, 2, 7, 14, 41, 107, 307, 871, 2546, 7497, 22380, 67366, 204517, 625132, 1922700, 5945469, 18473841, 57649699, 180602285, 567772883, 1790663427, 5663969707, 17963483548, 57112388657, 181994536484, 581168157605 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
An isolated 2-valent node is a 2-valent node non-adjacent to any other 2-valent node.
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.7.11).
LINKS
FORMULA
G.f.: Sum_{i >= 0} 1/(i+1)*binomial(2*i, i)*x^(i+1)*((1+x^3)/(1-x^2))^(i+1)*(1+x*(1+x^3)/(1-x^2))^(-(i+1)) or (1-x^2+x^3-sqrt((1-x^2+x^3)*(1-4*x+3*x^2-3*x^3)))/(2-2*x^2+2*x^3).
a(n) = Sum_{k=1..n}(((Sum_{j=1..k}(binomial(2*j-2,j-1)*(-1)^(j-k)*binomial(k,j)))*Sum_{j=0..(n-k)/2}(binomial(k,j)*binomial(n-k-j-1,n-k-2*j)))/k). - Vladimir Kruchinin, Apr 15 2016
MATHEMATICA
Table[Sum[((Sum[Binomial[2 j - 2, j - 1] (-1)^(j - k) Binomial[k, j], {j, 1, k}]) Sum[Binomial[k, j] Binomial[n - k - j - 1, n - k - 2 j], {j,
0, (n - k)/2}])/k, {k, 1, n}], {n, 0, 28}] (* Michael De Vlieger, Apr 15 2016 *)
PROG
(Maxima)
a(n):=sum(((sum(binomial(2*j-2, j-1)*(-1)^(j-k)*binomial(k, j), j, 1, k))*sum(binomial(k, j)*binomial(n-k-j-1, n-k-2*j), j, 0, (n-k)/2))/k, k, 1, n); /* Vladimir Kruchinin, Apr 15 2016 */
CROSSREFS
Sequence in context: A162460 A187306 A061274 * A306009 A290646 A133602
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Jun 13 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 10:04 EDT 2024. Contains 371657 sequences. (Running on oeis4.)