login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061575
Number of planar planted trees with n non-root nodes and without isolated 2-valent nodes.
0
0, 1, 0, 2, 2, 7, 14, 41, 107, 307, 871, 2546, 7497, 22380, 67366, 204517, 625132, 1922700, 5945469, 18473841, 57649699, 180602285, 567772883, 1790663427, 5663969707, 17963483548, 57112388657, 181994536484, 581168157605
OFFSET
0,4
COMMENTS
An isolated 2-valent node is a 2-valent node non-adjacent to any other 2-valent node.
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.7.11).
FORMULA
G.f.: Sum_{i >= 0} 1/(i+1)*binomial(2*i, i)*x^(i+1)*((1+x^3)/(1-x^2))^(i+1)*(1+x*(1+x^3)/(1-x^2))^(-(i+1)) or (1-x^2+x^3-sqrt((1-x^2+x^3)*(1-4*x+3*x^2-3*x^3)))/(2-2*x^2+2*x^3).
a(n) = Sum_{k=1..n}(((Sum_{j=1..k}(binomial(2*j-2,j-1)*(-1)^(j-k)*binomial(k,j)))*Sum_{j=0..(n-k)/2}(binomial(k,j)*binomial(n-k-j-1,n-k-2*j)))/k). - Vladimir Kruchinin, Apr 15 2016
MATHEMATICA
Table[Sum[((Sum[Binomial[2 j - 2, j - 1] (-1)^(j - k) Binomial[k, j], {j, 1, k}]) Sum[Binomial[k, j] Binomial[n - k - j - 1, n - k - 2 j], {j,
0, (n - k)/2}])/k, {k, 1, n}], {n, 0, 28}] (* Michael De Vlieger, Apr 15 2016 *)
PROG
(Maxima)
a(n):=sum(((sum(binomial(2*j-2, j-1)*(-1)^(j-k)*binomial(k, j), j, 1, k))*sum(binomial(k, j)*binomial(n-k-j-1, n-k-2*j), j, 0, (n-k)/2))/k, k, 1, n); /* Vladimir Kruchinin, Apr 15 2016 */
CROSSREFS
Sequence in context: A187306 A061274 A379566 * A306009 A290646 A133602
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Jun 13 2001
STATUS
approved