login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of planar planted trees with n non-root nodes and without isolated 2-valent nodes.
0

%I #11 Apr 15 2016 13:46:35

%S 0,1,0,2,2,7,14,41,107,307,871,2546,7497,22380,67366,204517,625132,

%T 1922700,5945469,18473841,57649699,180602285,567772883,1790663427,

%U 5663969707,17963483548,57112388657,181994536484,581168157605

%N Number of planar planted trees with n non-root nodes and without isolated 2-valent nodes.

%C An isolated 2-valent node is a 2-valent node non-adjacent to any other 2-valent node.

%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.7.11).

%F G.f.: Sum_{i >= 0} 1/(i+1)*binomial(2*i, i)*x^(i+1)*((1+x^3)/(1-x^2))^(i+1)*(1+x*(1+x^3)/(1-x^2))^(-(i+1)) or (1-x^2+x^3-sqrt((1-x^2+x^3)*(1-4*x+3*x^2-3*x^3)))/(2-2*x^2+2*x^3).

%F a(n) = Sum_{k=1..n}(((Sum_{j=1..k}(binomial(2*j-2,j-1)*(-1)^(j-k)*binomial(k,j)))*Sum_{j=0..(n-k)/2}(binomial(k,j)*binomial(n-k-j-1,n-k-2*j)))/k). - _Vladimir Kruchinin_, Apr 15 2016

%t Table[Sum[((Sum[Binomial[2 j - 2, j - 1] (-1)^(j - k) Binomial[k, j], {j, 1, k}]) Sum[Binomial[k, j] Binomial[n - k - j - 1, n - k - 2 j], {j,

%t 0, (n - k)/2}])/k, {k, 1, n}], {n, 0, 28}] (* _Michael De Vlieger_, Apr 15 2016 *)

%o (Maxima)

%o a(n):=sum(((sum(binomial(2*j-2,j-1)*(-1)^(j-k)*binomial(k,j),j,1,k))*sum(binomial(k,j)*binomial(n-k-j-1,n-k-2*j),j,0,(n-k)/2))/k,k,1,n); /* _Vladimir Kruchinin_, Apr 15 2016 */

%K nonn

%O 0,4

%A _Vladeta Jovovic_, Jun 13 2001