login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091321
OU-Sigma multiperfect numbers.
4
1, 6, 28, 90, 120, 496, 672, 8128, 10080, 63700, 220500, 523776, 1323000, 1528800, 2056320, 7856640, 33550336, 44553600, 162729000, 252927360, 459818240, 1379454720, 1476304896, 1980840960, 8589869056
OFFSET
1,2
COMMENTS
The OU-Sigma function is defined as OU-Sigma(n) = A107749(n).
Then an OU-Sigma perfect number satisfies OU-Sigma(n) = k*n for some k.
Every perfect number is here because OE-Sigma(2^(m-1)*M_m) = Sigma(2^(m-1))*UnitarySigma(M_m) = Sigma(2^(m-1))*Sigma(M_m) = 2^m*M_m.
Also in the sequence are 33550336, 8589869056, 22144573440, 51001180160, 153003540480, 243643438080, 583125903360, 71724486113280, 1555825650042470400, but there may be missing terms in between.
EXAMPLE
Sequence begins 2*3, 2*3^2*5, 2^2*7, 2^2*5^2*7^2*13, 2^3*3*5, 2^4*31, 2^5*3^2*5*7, ...
MATHEMATICA
fun[p_, e_] := If[p==2, 2^(e+1)-1, p^e+1]; f[n_] := If[n==1, 1, Times @@ fun @@@ FactorInteger[n]]; aQ[n_] := Divisible[f[n], n]; Select[Range[65000], aQ] (* Amiram Eldar, Mar 17 2019 *)
PROG
(PARI) f(n)= my(fm=factor(n)); prod(k=1, matsize(fm)[1], if(fm[k, 1]==2, 2^(fm[k, 2]+1)-1, fm[k, 1]^fm[k, 2]+1)); \\ A107749
isok(n) = (f(n) % n) == 0; \\ Michel Marcus, Jan 24 2019
CROSSREFS
Sequence in context: A302650 A055711 A141255 * A125310 A336535 A342380
KEYWORD
nonn,more
AUTHOR
Yasutoshi Kohmoto, Feb 17 2004
EXTENSIONS
Terms 220500 to 2056320 by R. J. Mathar, Jun 02 2011
Corrected and extended by Michel Marcus, Jan 24 2019
a(19)-a(25) from Amiram Eldar, Mar 17 2019
STATUS
approved