login
A091318
Lengths of runs of 1's in A039702.
7
1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 4, 2, 1, 1, 2, 2, 3, 1, 1, 3, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 3, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 3, 3, 3
OFFSET
1,2
COMMENTS
Number of primes congruent to 1 mod 4 in sequence before interruption by a prime 3 mod 4.
REFERENCES
Enoch Haga, Exploring prime numbers on your PC and the Internet with directions to prime number sites on the Internet, 2001, pages 30-31. ISBN 1-885794-17-7.
FORMULA
Count primes congruent to 1 mod 4 in sequence before interruption by a prime divided by 4 with remainder 3.
EXAMPLE
a(8)=3 because this is the sequence of primes congruent to 1 mod 4: 89, 97, 101. The next prime is 103, a prime 3 mod 4.
MATHEMATICA
t = Length /@ Split[Table[Mod[Prime[n], 4], {n, 2, 400}]]; Most[Transpose[Partition[t, 2]][[2]]] (* T. D. Noe, Sep 21 2012 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, Feb 22 2004
STATUS
approved