login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076633
Incorrect guess for index of n-th local maxima (in decreasing order) of f(k) = (sigma(k) - H_k)/(exp(H_k)log(H_k)), where H_k = 1 + 1/2 + 1/3 + ... + 1/k.
3
12, 120, 60, 2520, 5040, 360, 24, 840, 55440, 10080
OFFSET
1,1
COMMENTS
Lagarias showed that the Riemann Hypothesis is equivalent to the formula sigma(k) <= H_k + exp(H_k)log(H_k) for all k >= 1 with equality only when k=1. In other words f(k)<1 for all k. At first glance it seems that f(12) is the largest value of f, followed by f(120), f(60) and so on. Proving that f(12) is indeed the largest value would prove the Riemann Hypothesis. However, f(12) is not the largest value.
The terms shown are merely the maxima for "small" values of k. If the function f(k) is evaluated at colossally abundant numbers (A004490), we find that beyond the 58th colossally abundant number, which is over 10^76, the function is greater than f(12) and increasing at each subsequence colossally abundant number. Use A073751 to generate colossally abundant numbers not in A004490. - T. D. Noe, Oct 24 2002
CROSSREFS
KEYWORD
nonn
AUTHOR
Luke Pebody (pebodyl(AT)msci.memphis.edu), Oct 22 2002
STATUS
approved