login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162396
a(n) = 2*a(n-2) for n > 2; a(1) = 5, a(2) = 2.
6
5, 2, 10, 4, 20, 8, 40, 16, 80, 32, 160, 64, 320, 128, 640, 256, 1280, 512, 2560, 1024, 5120, 2048, 10240, 4096, 20480, 8192, 40960, 16384, 81920, 32768, 163840, 65536, 327680, 131072, 655360, 262144, 1310720, 524288, 2621440, 1048576, 5242880
OFFSET
1,1
COMMENTS
Binomial transform is A162268. Fifth binomial transform is A083880 without initial 1.
FORMULA
a(n) = (3/2-(-1)^n)*2^(1/4*(2*n+3+(-1)^n)).
G.f.: x*(5+2*x)/(1-2*x^2).
MAPLE
A162396:=n->(3/2-(-1)^n)*2^(1/4*(2*n+3+(-1)^n)): seq(A162396(n), n=1..60); # Wesley Ivan Hurt, Oct 08 2017
MATHEMATICA
CoefficientList[Series[(5 + 2*x)/(1 - 2*x^2), {x, 0, 40}], x] (* Wesley Ivan Hurt, Oct 08 2017 *)
RecurrenceTable[{a[1]==5, a[2]==2, a[n]==2 a[n-2]}, a, {n, 40}] (* Vincenzo Librandi, Oct 09 2017 *)
PROG
(Magma) [ n le 2 select 8-3*n else 2*Self(n-2): n in [1..41] ];
(Magma) [Floor((3/2-(-1)^n)*2^(1/4*(2*n+3+(-1)^n))): n in [1..50]]; // Vincenzo Librandi, Oct 09 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jul 02 2009
EXTENSIONS
G.f. corrected, formula simplified, comment added by Klaus Brockhaus, Sep 18 2009
STATUS
approved