OFFSET
0,1
COMMENTS
Could the komet be a planit?
REFERENCES
D. Gale, Mathematical Entertainments: "Careful Card-Shuffling and Cutting Can Create Chaos," The Mathematical Intelligencer, vol. 14, no. 1, 1992, pages 54-56.
D. Gale, Tracking the Automatic Ant and Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998.
Hans Havermann, Algorithm, #4, 1992, p. 2.
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 0..74
Lars Blomberg & Hans Havermann, komets & planits (250 kometary path fragments)
Hans Havermann, A Recreational Endeavour
Clark Kimberling, Problem 1615, Crux Mathematicorum, Vol. 17 (2) 44 1991; Solution to Problem 1615, Crux Mathematicorum, Vol. 18, March 1992, pp. 82-83.
Eric Weisstein's World of Mathematics, Kimberling Sequence
FORMULA
a(0) = 2; a(n) = a(n-1)-th term in Kimberling's expulsion array (A007063).
MATHEMATICA
K[i_, j_] := i + j - 1 /; (j >= 2 i - 3);
K[i_, j_] := K[i - 1, i - (j + 2)/2] /; (EvenQ[j] && (j < 2 i - 3));
K[i_, j_] := K[i - 1, i + (j - 1)/2] /; (OddQ[j] && (j < 2 i - 3));
K[i_] := K[i] = K[i, i]; SetAttributes[K, Listable];
A007063[i_] := K[i];
A038807[1] := 2;
ReleaseHold[Table[A038807[n], {n, 1, 35}]]
(* Enrique Pérez Herrero, Jan 11 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved