login
A038807
Future of the smallest-perizeroin komet in Kimberling's expulsion array (A035486).
6
2, 3, 5, 10, 9, 20, 46, 83, 12, 24, 23, 36, 79, 124, 172, 56, 119, 61, 169, 17, 42, 84, 232, 285, 596, 1186, 3190, 6857, 14225, 12495, 30482, 45827, 79090, 144112, 423486, 1087497, 2443796, 628733, 871389, 1199242, 2787410, 7975876
OFFSET
0,1
COMMENTS
Could the komet be a planit?
REFERENCES
D. Gale, Mathematical Entertainments: "Careful Card-Shuffling and Cutting Can Create Chaos," The Mathematical Intelligencer, vol. 14, no. 1, 1992, pages 54-56.
D. Gale, Tracking the Automatic Ant and Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998.
Hans Havermann, Algorithm, #4, 1992, p. 2.
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 0..74
Lars Blomberg & Hans Havermann, komets & planits (250 kometary path fragments)
Hans Havermann, A Recreational Endeavour
Clark Kimberling, Problem 1615, Crux Mathematicorum, Vol. 17 (2) 44 1991; Solution to Problem 1615, Crux Mathematicorum, Vol. 18, March 1992, pp. 82-83.
Eric Weisstein's World of Mathematics, Kimberling Sequence
FORMULA
a(0) = 2; a(n) = a(n-1)-th term in Kimberling's expulsion array (A007063).
MATHEMATICA
K[i_, j_] := i + j - 1 /; (j >= 2 i - 3);
K[i_, j_] := K[i - 1, i - (j + 2)/2] /; (EvenQ[j] && (j < 2 i - 3));
K[i_, j_] := K[i - 1, i + (j - 1)/2] /; (OddQ[j] && (j < 2 i - 3));
K[i_] := K[i] = K[i, i]; SetAttributes[K, Listable];
A007063[i_] := K[i];
A038807[1] := 2;
A038807[n_] := A007063[A038807[n - 1]];
ReleaseHold[Table[A038807[n], {n, 1, 35}]]
(* Enrique Pérez Herrero, Jan 11 2023 *)
CROSSREFS
KEYWORD
nonn
STATUS
approved