login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A288244 Numbers k such that prime(k)*prime(k+1)*prime(k+2) mod prime(k+3) is even. 0
1, 2, 3, 5, 10, 11, 12, 13, 14, 15, 18, 19, 20, 24, 28, 31, 34, 36, 37, 39, 40, 41, 42, 45, 46, 48, 49, 57, 64, 66, 67, 68, 70, 72, 73, 75, 78, 79, 82, 83, 86, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 105, 108, 109, 110, 116, 117, 120, 121, 124, 125, 126, 128 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(971)=325850. No more terms?

Almost surely the above conjecture is true, but it is currently hopeless to prove. It would follow from prime gaps being less than about the cube root, but this is not known even under RH. - Charles R Greathouse IV, Jun 10 2017

LINKS

Table of n, a(n) for n=1..63.

MATHEMATICA

Select[Range@ 128, EvenQ@ Mod[Times @@ Take[#, 3], #[[4]]] &@ Prime[# + Range[0, 3]] &] (* Michael De Vlieger, Jun 09 2017 *)

Position[Partition[Prime[Range[140]], 4, 1], _?(EvenQ[Mod[Times@@Take[#, 3], #[[4]]]]&)]//Flatten//Quiet (* Harvey P. Dale, Oct 14 2020 *)

PROG

(PARI) isok(n) = (((prime(n)*prime(n+1)*prime(n+2)) % prime(n+3)) % 2) == 0; \\ Michel Marcus, Jun 07 2017

(PARI) list(lim)=my(v=List(), p=2, q=3, r=5, n); forprime(s=7, , if(n++>lim, break); if(p*q*r%s%2==0, listput(v, n)); p=q; q=r; r=s); Vec(v) \\ Charles R Greathouse IV, Jun 10 2017

CROSSREFS

Sequence in context: A038807 A094542 A175481 * A246392 A219860 A076681

Adjacent sequences:  A288241 A288242 A288243 * A288245 A288246 A288247

KEYWORD

nonn

AUTHOR

Zak Seidov, Jun 06 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 20:01 EDT 2021. Contains 347659 sequences. (Running on oeis4.)