login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038806
Convolution of A008549 with A000302 (powers of 4).
5
0, 1, 10, 69, 406, 2186, 11124, 54445, 259006, 1205790, 5519020, 24918306, 111250140, 492051124, 2159081192, 9409526397, 40766269774, 175707380630, 753876367356, 3221460111958, 13716223138388, 58210889582796
OFFSET
0,3
LINKS
Hacène Belbachir, Toufik Djellal, Jean-Gabriel Luque, On the self-convolution of generalized Fibonacci numbers, arXiv:1703.00323 [math.CO], 2017.
A. Bernini, F. Disanto, R. Pinzani and S. Rinaldi, Permutations defining convex permutominoes, J. Int. Seq. 10 (2007) # 07.9.7
FORMULA
a(n) = (n+3)*4^n -(n+2)*binomial(2*n+3, n+1)/2.
G.f.: x*(c(x)/(1-4*x))^2, where c(x) = g.f. for Catalan numbers A000108.
a(n+1), n >= 0 is convolution of A000346 with itself; a(n+1), n >= 0 is convolution of Catalan numbers A000108 C(n+1), n >= 0 with A002697; a(-1)=0.
Asymptotics: a(n) ~ 4^n*(n+1-4*sqrt(n/Pi)). - Fung Lam, Mar 28 2014
Recurrence: (n-1)*(n+1)*a(n) = 2*(n+1)*(4*n-3)*a(n-1) - 8*n*(2*n+1)*a(n-2). - Vaclav Kotesovec, Mar 28 2014
MATHEMATICA
CoefficientList[Series[x ((1 - Sqrt[1 - 4 x])/(2 x)/(1 - 4 x))^2, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 29 2014 *)
PROG
(Magma) [(n+3)*4^n -(n+2)*Binomial(2*n+3, n+1)/2: n in [0..25]]; // Vincenzo Librandi, Jun 09 2011
CROSSREFS
KEYWORD
easy,nonn
STATUS
approved