The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038806 Convolution of A008549 with A000302 (powers of 4). 5
 0, 1, 10, 69, 406, 2186, 11124, 54445, 259006, 1205790, 5519020, 24918306, 111250140, 492051124, 2159081192, 9409526397, 40766269774, 175707380630, 753876367356, 3221460111958, 13716223138388, 58210889582796 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Hacène Belbachir, Toufik Djellal, Jean-Gabriel Luque, On the self-convolution of generalized Fibonacci numbers, arXiv:1703.00323 [math.CO], 2017. A. Bernini, F. Disanto, R. Pinzani and S. Rinaldi, Permutations defining convex permutominoes, J. Int. Seq. 10 (2007) # 07.9.7 FORMULA a(n) = (n+3)*4^n -(n+2)*binomial(2*n+3, n+1)/2. G.f.: x*(c(x)/(1-4*x))^2, where c(x) = g.f. for Catalan numbers A000108. a(n+1), n >= 0 is convolution of A000346 with itself; a(n+1), n >= 0 is convolution of Catalan numbers A000108 C(n+1), n >= 0 with A002697; a(-1)=0. Asymptotics: a(n) ~ 4^n*(n+1-4*sqrt(n/Pi)). - Fung Lam, Mar 28 2014 Recurrence: (n-1)*(n+1)*a(n) = 2*(n+1)*(4*n-3)*a(n-1) - 8*n*(2*n+1)*a(n-2). - Vaclav Kotesovec, Mar 28 2014 MATHEMATICA CoefficientList[Series[x ((1 - Sqrt[1 - 4 x])/(2 x)/(1 - 4 x))^2, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 29 2014 *) PROG (Magma) [(n+3)*4^n -(n+2)*Binomial(2*n+3, n+1)/2: n in [0..25]]; // Vincenzo Librandi, Jun 09 2011 CROSSREFS Cf. A000108, A000346, A008549, A000302, A002697. Sequence in context: A026958 A026988 A081280 * A016273 A128737 A320228 Adjacent sequences: A038803 A038804 A038805 * A038807 A038808 A038809 KEYWORD easy,nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 11:46 EDT 2023. Contains 361549 sequences. (Running on oeis4.)