|
|
A128737
|
|
Number of LDU's in all skew Dyck paths of semilength n.
|
|
1
|
|
|
0, 0, 0, 0, 1, 10, 69, 412, 2291, 12244, 63886, 328256, 1669363, 8429384, 42349096, 211982828, 1058244079, 5272285552, 26227527576, 130323237088, 647013004499, 3210128312122, 15919166804461, 78915323039268, 391100149306301
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
COMMENTS
|
A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps.
|
|
LINKS
|
E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
|
|
FORMULA
|
G.f.: z(g-1)^3/(4g - 2zg - 6zg^2 - 3 + 3*z), where g = 1 + zg^2 + z(g-1) = (1 - z - sqrt(1 - 6z + 5z^2))/(2z).
Conjecture D-finite with recurrence: -10*(n+1)*(n-4)*a(n) +(73*n^2-273*n+140)*a(n-1) +(-132*n^2+641*n-734) *a(n-2) +(n-3)*(89*n-269)*a(n-3) -20*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jun 17 2016
|
|
EXAMPLE
|
a(4)=1 because among the 36 (=A002212(4)) skew Dyck paths of semilength 4 only UUUDLDUD has a LDU.
|
|
MAPLE
|
g:=(1-z-sqrt(1-6*z+5*z^2))/2/z: ser:=series(z*(g-1)^3/(4*g-2*z*g-6*z*g^2-3+3*z), z=0, 30): seq(coeff(ser, z, n), n=0..27);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|